Homework 5, Math 422, Spring 2004

Due Friday, March 19

1. Let \(\{f_n(z)\} \) be a uniformly bounded sequence of holomorphic functions on a domain \(D \), and let \(z_0 \in D \). Suppose that for each \(m \geq 0 \), \(f_n^{(m)}(z_0) \to 0 \) as \(n \to \infty \). Show that \(f_n(z) \to 0 \) normally on \(D \).

2. Let \(D \) be a bounded domain, and let \(f(z) \) be a holomorphic function from \(D \) into \(D \). Denote by \(f_n(z) \) the \(n^{th} \) iterate \((f \circ f \circ \cdots \circ f)(z) \). Suppose that \(z_0 \) is an attracting fixed point for \(f(z) \), i.e., \(f(z_0) = z_0 \) and \(|f'(z_0)| < 1 \). Show that \(f_n(z) \) converges uniformly on compact subsets to \(z_0 \). (Hint: Reduce to the case \(z_0 = 0 \), \(\mathbb{D} \subset D \), and \(f(\mathbb{D}) \subset \mathbb{D} \). Use the Schwarz Lemma.)

3. Let \(\varphi(z) \) be the Riemann map of a simply connected domain \(D \) onto \(\mathbb{D} \), normalized by \(\varphi(z_0) = 0 \) and \(\varphi'(z_0) > 0 \) (real). Show that if \(f(z) \) is any holomorphic function on \(D \) with \(f(z_0) = 0 \) and \(|f(z)| \leq 1 \) for all \(z \in D \), then \(|f'(z_0)| \leq \varphi'(z_0) \), with equality only when \(f(z) \) is a constant multiple of \(\varphi(z) \). Remark: This shows that \(\varphi(z) \) is the Ahlfors function of \(D \) corresponding to \(z_0 \).

4. Show that

\[
\left(\frac{1}{f} \right)^{\frac{1}{2}} (z) = f^1(z)
\]

by direct calculation. Also show that

\[
(g \circ f)^1(z) = g^1(f(z))|f'(z)|.
\]

Interpret the latter in terms of stretching with respect to the Euclidean and spherical metrics.

5. Show that the functions \(1/(z + \epsilon) \), \(0 < \epsilon \leq 1 \), form a normal family of meromorphic functions on \((\mathbb{C} \cup \{\infty\}) - \{0\} \). (Hint: Marty’s Theorem.)