Proofs of Basic Theorems on Differentiable Functions

1. CHAIN RULE: When \(f : \mathbb{R}^n \mapsto \mathbb{R}^m \) is differentiable at \(a \in \mathbb{R}^n \) and \(g : \mathbb{R}^m \mapsto \mathbb{R}^p \) is differentiable at \(b = f(a) \), then the composite function \(h = g \circ f \) is differentiable at \(a \) with
\[
(dh)_a = (dg)_b \circ (df)_a.
\]

PROOF. By the definition of differentiability, for
\[
E_f(x) = \frac{f(x) - f(a) - (df)_a(x - a)}{||x - a||}
\]
and
\[
E_g(y) = \frac{g(y) - g(b) - (dg)_b(y - b)}{||y - b||},
\]
we have
\[
\lim_{x \to a} E_f(x) = 0 = \lim_{y \to b} E_g(y).
\]
Defining \((dh)_a\) to be \((dg)_b \circ (df)_a\), we need to show that
\[
E_h(x) = \frac{h(x) - h(a) - (dh)_a(x - a)}{||x - a||} \to 0 \text{ as } x \to a.
\]
Because linear transformations on finite dimensional vector spaces are continuous, there are positive constants \(C_f \) and \(C_g \) for which
\[
||(df)_a(x - a)|| \leq C_f ||x - a|| \quad \forall x \quad \text{and}
\]
\[
||(dg)_b(y - b)|| \leq C_g ||y - b|| \quad \forall y,
\]
Since \(f(x) - f(a) = (df)_a(x - a) + ||x - a||E_f(x), \)
we deduce that
\[\| f(x) - f(a) \| \leq (C_f + \|E_f(x)\|) \| x - a \| \forall x. \]

Using \(h(x) = g(f(x)) \) and \(h(a) = g(f(a)) = g(b) \), we can use these inequalities and the triangle inequality to obtain

\[\|E_{h}(x)\| = \|g(f(x)) - g(f(a)) - (dg)_b((f(x)) - f(a)) \]
\[+ (dg)_b((f(x)) - f(a) - (df)_a(x - a))\|/\|x - a\| \]
\[\leq \|E_{g}(f(x))\| \|f(x) - f(a)\|/\|x - a\| + C_g \|E_f(x)\| \]
\[\leq \|E_{g}(f(x))\|(C_f + \|E_f(x)\|) + C_g \|E_f(x)\|. \]

Then, as \(x \to a \), \(\|E_{h}(x)\| \to 0 \) since \(\|E_f(x)\| \to 0 \), \(f(x) \to b \)
by continuity of \(f \) at \(a \), and thus \(\|E_{g}(f(x))\| \to 0 \) in view of
the fact that \(\|E_g(y)\| \to 0 \) as \(y \to b \). This completes the proof.

2. GENERALIZATION OF ROLLE'S THEOREM. Let
\(I = (a, b) \) be a possibly infinite interval and suppose
\(f : I \mapsto \mathbb{R} \) is a function which is differentiable on \(I \) and
for which \(\lim_{x \to a} f(x) = 0 = \lim_{x \to b} f(x) \). Then there is at least
one point \(c \in I \) for which \(f'(c) = 0 \).

PROOF. If \(f(x) = 0 \ \forall x \in I \), \(f'(x) = 0 \ \forall x \in I \).
Otherwise, replacing \(f \) by \(-f \) if need be, we can assume
there is a point \(x_1 \) in \(I \) for which \(f(x_1) > 0 \). By the assumptions on \(f \), we can choose \(a_1 \) and \(b_1 \) in \(I \) for which \(a_1 < x_1 < b_1 \) and \(|f(x)| < f(x_1) \) when either \(a < x \leq a_1 \) or \(b_1 \leq x < b \). Then, on the compact set \([a_1, b_1]\), \(f \) achieves a maximum value \(M \) at a point \(c \). Since \(M \geq f(x_1) > \max\{f(a_1), f(b_1)\}, \ c \in (a_1, b_1) \). Then \(f'(c) = 0 \) from the elementary calculus observation that \(f' \) vanishes at any local maximum or minimum point.

NOTE: Aside from the mild extension to possibly infinite intervals, this proof appears in most elementary calculus texts with "handwaving" over the existence of \(M \) since elementary calculus texts don't want to get into sups and infs, much less the properties of continuous functions on compact sets.

3. CAUCHY MEAN VALUE THEOREM. Let \(I \) be as in Rolle's Theorem with \(f(x) \) and \(g(x) \) two \(\mathbb{R} \)-valued differentiable functions on \(I \) having finite limits \(f(a), g(a) \) as \(x \to a \) and \(f(b), g(b) \) as \(x \to b \). Then there exists a point \(c \in I \) for which \((f(b) - f(a))g'(c) = (g(b) - g(a))f'(c) \).

PROOF. Let
\[
h(x) = (f(b) - f(a))(g(x) - g(a)) \\
- (f(x) - f(a))(g(b) - g(a)).
\]
Then \(h \) satisfies the hypotheses of Rolle's Theorem so there is a point \(c \in I \) for which
\[
0 = h'(c) = (f(b) - f(a))g'(c) - (g(b) - g(a))f'(c).
\]
4. MEAN VALUE THEOREM. Let \([a, b]\) be a closed, bounded interval and \(f:[a, b] \mapsto \mathbb{R}\) a function which is differentiable on the open interval \((a, b)\) and continuous at both \(a\) and \(b\). Then \(f(b) - f(a) = (b - a)f'(c)\) for some \(c \in (a, b)\).

PROOF. Apply the Cauchy Mean Value Theorem with \(g(x) = x\), hence \(g'(c) = 1\).