The Foliated Liouville Problem

R. Feres
http://www.math.wustl.edu/~feres/publications.html
Joint work with A. Zeghib

November 6, 2004 - EIU
General setting – harmonic version

- M – a compact connected manifold without boundary;

- \mathcal{F} – a continuous foliation of M by (smooth) Riemannian manifolds.

Definition: The foliated space (M, \mathcal{F}) has the *Liouville property* if continuous leafwise harmonic functions on M are leafwise constant. If this property holds, we also say that (M, \mathcal{F}) is *harmonically simple*.

Problem: Characterize the (M, \mathcal{F}) that have this property.
Holomorphic version

- M – a compact connected manifold without boundary;

- \mathcal{F} – a continuous foliation of M by complex manifolds.

Definition: The foliated space (M, \mathcal{F}) is *holomorphically simple* if continuous leafwise holomorphic functions on M are leafwise constant.
Uninteresting examples:

- If the leaves of \mathcal{F}, individually, do not admit bounded harmonic functions, then (M, \mathcal{F}) is harmonically simple. This is the case, for example, if the leaves of \mathcal{F} have non-negative Ricci curvature. (S.-T. Yau: If L is a complete Riemannian manifold with non-negative Ricci curvature, then there are no non-constant bounded harmonic function.)

- In the holomorphic case, if each leaf of \mathcal{F} admits \mathbb{C}^m as a (holomorphic) covering space, then (M, \mathcal{F}) is holomorphically simple.

- If the leaves of \mathcal{F} are holomorphically parallelizable (e.g., \mathcal{F} is the orbit foliation of a locally free action of a complex Lie group on M), then (M, \mathcal{F}) is holomorphically simple.
Some “negative” results
(conditions that imply the Liouville property)

Theorem 1. (Holomorphic) *If the closure of each leaf of \((M, \mathcal{F})\) contains (at most) countably many minimal sets. Then the foliation is holomorphically simple.*

Theorem 2. (Holomorphic) *If \((M, \mathcal{F})\) has codimension-one, then it is holomorphically simple.*

Theorem 3. [Garnett] (Harmonic) *If the union of the supports of harmonic measures is all of \(M\), then \((M, \mathcal{F})\) is harmonically simple.*
Foliated bundle over S with fiber X

Let S' be a compact connected Riemannian (complex, in the holomorphic case) manifold, \tilde{S} its universal covering space, and γ the fundamental group of S represented as the group of deck transformations of \tilde{S}. Let X be a compact connected space on which Γ acts by homeomorphisms. Let $M = (\tilde{S} \times X)/\Gamma$ denote the space of orbits for the action of Γ on $\tilde{S} \times X$ defined by $(s, x) \cdot \gamma := (s\gamma, \gamma^{-1}(x))$. Then M is foliated by Riemannian (complex) manifolds locally isomorphic to S.

If ρ denotes the action of Γ on X, the associated foliated bundle will be written (M_ρ, F_ρ).

Of particular interest: S is a Riemann surface of genus $g \geq 2$.
“Negative” results for foliated bundles

Let S be a compact Riemann surface of genus at least 2. If G is an algebraic group, let $\text{Hom}(\Gamma, G)$ denote the variety of homomorphisms from Γ into G.

Theorem 4. Let (M_ρ, F_ρ) be the foliated bundle over S with fiber $P^{n-1}(\mathbb{C})$ and action induced by $\rho : \Gamma \rightarrow GL(n, \mathbb{C})$. Then there is a Zariski open dense subset U in $\text{Hom}(\Gamma, GL(n, \mathbb{C}))$ such that, for each $\rho \in U$, (M_ρ, F_ρ) is both holomorphically and harmonically simple.

Theorem 5. Let Λ be a Gromov-hyperbolic group, X the boundary of Λ, and S a compact connected Riemannian manifold with fundamental group Γ. Suppose that Γ acts on X via a homomorphism $\rho : \Gamma \rightarrow \Lambda$ and let (M_ρ, F_ρ) be the corresponding foliated bundle over S. Then (M_ρ, F_ρ) is harmonically simple. The same holds if Λ is replaced by $SL(2, \mathbb{C})$.
"Positive" results

Theorem 6. (Holomorphic) *There exists a compact real analytic foliation (M, \mathcal{F}), a foliated bundle over a compact Riemann surface, and a real analytic leafwise holomorphic function on M that is not leafwise constant.*

- \mathbb{D} – unit disc; Γ a cocompact lattice in $SU(1, 1)$; $S = \mathbb{D}/\Gamma$;

- $M = (\mathbb{D} \times C)/\Gamma$; $C = \{ [z_1, z_2, t] \in P^4(\mathbb{R}) : |z_1|^2 - |z_2|^2 = t^2 \}$;

- $\left(\begin{array}{cc} \alpha & \beta \\ \bar{\beta} & \bar{\alpha} \end{array} \right) \cdot [z_1, z_2, t] = [\alpha z_1 + \beta \bar{z}_2, \alpha z_2 + \beta \bar{z}_1, t]$;

- $f(z, [\alpha, \beta, t]) := \frac{\bar{\alpha}z - \beta}{-\beta z + \alpha}$. f is Γ-invariant.
Harmonically non-simple, holomorphically simple example

\[S = \mathbb{D}/\Gamma; \ \Gamma \subset SU(1,1) \text{ a cocompact lattice.} \]

Theorem 7. \(\exists (M,F), \text{ a fol. bund. over } S \text{ with fiber } S^2, \text{ such that:} \)

- \((M,F)\) is \(C^\omega\) on complement of pair of leaves, \(S_1, S_2, \text{ homeom. to } S; \)

- \((M,F)\) is ergodic with respect to the smooth measure class;

- \((S_1 \cup S_2)^c\) has a \(C^\omega\) compactification, which is an ergodic foliated bundle over \(S\) with fiber \(S^1 \times [0, 2\pi]\);

- For both \((M,F)\) and the above analytic compactification, the Liouville property does not hold. A continuous, leafwise harmonic, not leafwise constant, can be found that is real analytic on the complement of \(S_1 \cup S_2.\)
A “universal” non-Liouville foliation

• \(X_0 = \text{Har}(\mathbb{D}) = \{ f : \mathbb{D} \to \mathbb{C} \text{ harmonic, } |f(z)| \leq 1 \}; \)

• \(PSU(1, 1) \) acts on \(X_0 \) by \((g, f) \mapsto f \circ g^{-1}; \)

• \(\Gamma \subset PSU(1, 1) \) a cocompact lattice; \(M_0 = (\mathbb{D} \times X_0)/\Gamma; \)

• \(\Phi([z, f]) := f(z), \Phi : M_0 \to \mathbb{C}. \)

Finite dimensional examples are obtained by looking for finite dimensional closed orbits of \(PSU(1, 1) \) on \(X_0 \), then restricting \(\Phi \) to the foliated subspace of \(M_0 \) associated to that orbit.
Dynamics of subgroups of $PSU(1, 1)$ acting on $Har(\mathbb{D})$

Devaney: A continuous map $f : X \rightarrow X$ of a metric space X generates a chaotic dynamical system if:

- There exists a dense orbit (topological transitivity);

- The set of periodic points (finite orbits) is dense;

- Sensitive dependence on initial conditions. (There exists $\delta > 0$ such that for all $x \in X$ and every neighborhood N of x, there exists $y \in N$ and positive integer n such that $f^n(x)$ and $f^n(y)$ are more than δ apart.)

Theorem 8. Let γ be a hyperbolic or parabolic element of $PSL(2, \mathbb{R})$, regarded as a transformation on $Har(\mathbb{D})$. Then γ defines a chaotic dynamical system.
Questions

• If \((M, \mathcal{F})\) has codimension 2, is it holomorphically simple?

• If \((M, \mathcal{F})\) has codimension 1, is it harmonically simple?

• Clarify relationship of holom. simple and harm. simple foliations. (Note: if \(H^1_{dR}(M, \mathcal{F}) = 0\), harm. simple \(\Leftrightarrow\) holom. simple.)

• Let \((M, \mathcal{F})\) be a compact foliated bundle over \(\Gamma \backslash G/K\), where \(G/K\) is an irreducible locally symmetric space of rank at least two. Show (or give counter-example) that the foliation is harmonically simple.

• Given a hyperbolic and a parabolic element in \(PSL(2, \mathbb{R})\), are the dynamical systems they define on \(Har(\mathbb{D})\) topologically equivalent?