We start with an “empty” matrix P that is 2008×2008

John and Mary play the following game:

John picks any number and enters it somewhere in the matrix.

Then Mary picks a number and puts it somewhere in the matrix.

Then John enters another number, then Mary, etc., taking turns back and forth until the matrix is filled.

The det G is computed. John wins the game if $\det G \neq 0$; Mary wins if $\det G = 0$.

Does either payer have a winning strategy — that is, an algorithm for making plays that will guarantee a win?
Effect of a Linear Transformation on Area

Theorem Suppose \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is a linear transformation with standard matrix \(A \).

1) Let \(S \) be a parallelogram in \(\mathbb{R}^2 \). The image of the parallelogram is \(T(S) = \{ T(\mathbf{x}) : \mathbf{x} \text{ in } S \} \) and another parallelogram (possibly “collapsed” to line segment or point)

\[
\text{(area of } T(S) \text{)} = |\det A| \cdot (\text{area of } S)
\]

2) If \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) is linear with standard matrix \(A \). Let \(S \) be a parallelepiped in \(\mathbb{R}^3 \). Then

\[
\text{(volume of } T(S) \text{)} = |\det A| \cdot (\text{volume of } S)
\]
And not just for parallelograms!

“Theorem” For linear $T : \mathbb{R}^2 \to \mathbb{R}^2$, or for $T : \mathbb{R}^3 \to \mathbb{R}^3$

1) if S is any subset of the plane that has a finite area, then

$$\text{area} \ (T(S)) = |\det A| \cdot \text{area}(S)$$

2) if S is any subset of the \mathbb{R}^3 that has a finite volume, then

$$\text{volume} \ (T(S)) = |\det A| \cdot \text{volume}(S)$$
\mathbb{R}^n is an example of what is called a **vector space**.

\mathbb{R}^n contains **vectors** like $u = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

and has **two operations**

i) **addition** (+)

ii) **multiplication by a scalar** that obey these rules:

\[
\begin{array}{c}
\text{For all } \quad u, v, w \in V \quad \text{(vectors)} \\
\text{and for all } \quad c, d \in \mathbb{R} \quad \text{(scalars)} \\
1. \quad u + v \text{ is in } V \quad \text{(closure under addition)} \\
2. \quad u + v = v + u \\
3. \quad (u + v) + w = u + (v + w) \\
4. \quad \text{There is a vector (denoted } 0 \text{) with the property } u + 0 = u \\
5. \quad \text{For each vector } u, \text{ there is another vector } \quad \text{called } -u \text{ for which } u + (-u) = 0 \\
6. \quad cu \text{ is in } V \quad \text{(closure under scalar multiplication)} \\
7. \quad c(u + v) = cu + cv \\
8. \quad (c + d)u = cu + du \\
9. \quad c(du) = (cd)u \\
10. \quad 1u = u
\end{array}
\]
A vector space V is a nonempty set of objects and two operations which we call

i) addition $(+)$
ii) multiplication by a scalar that obey these rules ("axioms for a vector space"):

For all $u, v, w \in V$ (vectors) and for all $c, d \in \mathbb{R}$ (scalars)

1. $u + v$ is in V (closure under addition)
2. $u + v = v + u$
3. $(u + v) + w = u + (v + w)$
4. There is a vector (denoted 0) with the property $u + 0 = u$
5. For each vector u, there is another vector called $-u$ for which $u + (-u) = 0$
6. cu is in V (closure under scalar multiplication)
7. $c(u + v) = cu + cv$
8. $(c + d)u = cu + du$
9. $c(du) = (cd)u$
10. $1u = u$
From these axioms for a vector space A1-A10, we can deduce additional properties that are true in every vector space, such as:

for every vector \(\mathbf{u} \), \(0 \cdot \mathbf{u} = \mathbf{0} \)

because

\[
0 \cdot \mathbf{u} = (0 + 0) \cdot \mathbf{u} = 0 \cdot \mathbf{u} + 0 \cdot \mathbf{u}
\]

Add \(- (0 \cdot \mathbf{u})\) to both sides

\[
0 \cdot \mathbf{u} - (0 \cdot \mathbf{u}) = (0 \cdot \mathbf{u} + 0 \cdot \mathbf{u}) - (0 \cdot \mathbf{u})
\]

\[
\mathbf{0} = 0 \cdot \mathbf{u} + (0 \cdot \mathbf{u} - (0 \cdot \mathbf{u}))
\]

\[
0 = 0 \cdot \mathbf{u} + \mathbf{0} = 0 \cdot \mathbf{u}
\]

and get

\[
\mathbf{0} = 0 \cdot \mathbf{u}
\]
Suppose \(V \) is a vector space and that \(H \) is a subset of \(V \) (written \(H \subseteq V \)).

\(H \) is called a sub\textit{space} of \(V \) if

i) \(0 \in H \)

ii) if \(u, v \in H \), then \(u + v \in H \)

\((H \) is “closed under addition”)

iii) if \(u \in H \) and \(c \) is a scalar, then \(cu \in H \)

\((H \) is “closed under scalar multiplication”)

All other properties needed for a vector space are satisfied by vectors in \(H \) automatically since they are true already in the given vector space \(V \):

for example, if \(u, v \in H \), then \(u + v = v + u \)

because \(u, v \) are also in the larger set, and \textit{we already know} that \(u + v = v + u \) is true in vector space \(V \).

Think of a subspace \(H \) as a smaller “self-contained” vector space that lives inside the larger vector space \(V \).
Theorem

If \[\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p \] are vectors in \(V \), then

Let \(H = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p\} \)

\[= \{\text{all possible linear combinations of } \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p\} \]

\(H \) is a subspace of \(V \). Why?

i) \(\mathbf{0} = 0\mathbf{v}_1 + \ldots + 0\mathbf{v}_p \) is in \(H \)

ii) If \(\mathbf{u}, \mathbf{v} \in H \), that means

\[\mathbf{u} = c_1\mathbf{v}_1 + \ldots + c_p\mathbf{v}_p \] for some weights \(c_1, \ldots, c_p \) and

\[\mathbf{v} = d_1\mathbf{v}_1 + \ldots + d_p\mathbf{v}_p \] for some weights \(d_1, \ldots, d_p \)

Then

\[\mathbf{u} + \mathbf{v} = (c_1 + d_1)\mathbf{v}_1 + \ldots + (c_p + d_p)\mathbf{v}_p \]

so \(\mathbf{u} + \mathbf{v} \) is in \(H \), and

iii) \(c\mathbf{u} = (cc_1)\mathbf{v}_1 + \ldots + (cc_p)\mathbf{v}_p \) is in \(H \)
Example

Suppose A is an $m \times n$ matrix.

Let $H = \{x \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\} =$ the “solution set” of the homogeneous equation $A\mathbf{x} = \mathbf{0}$

H is a subspace of \mathbb{R}^n because

- **$\mathbf{0}$ is in H** (because $A\mathbf{0} = \mathbf{0}$)

- if \mathbf{u} and \mathbf{v} are in H

 then $\mathbf{u} + \mathbf{v}$ is in H (because $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$)

and

- if \mathbf{u} in H and c is a scalar

 then $c\mathbf{u}$ is in H (because $A(c\mathbf{u}) = cA\mathbf{u} = c\mathbf{0} = \mathbf{0}$)

H is called the null space of the matrix A.
Practice

1) Let \(\mathbb{P} \) be the vector space of all polynomials

a) What is the “zero vector” in this space?

b) Is the “zero vector” in Span \(\{1, t, t^2, t^3\} \)?
Why?

c) Consider a linear combination of these “vectors”

\[1, t, t^2, t^3 \]

that adds up to the zero vector:

\[c_0 + c_1 t + c_2 t^2 + c_3 t^3 = 0 \]

What can you say about the weights \(c_0, \ldots, c_3 \)?
Why?