Right and Left Inverses for a Matrix

D is called a **right inverse** for a $m \times n$ matrix A if $AD = I_m$ (so D must be $n \times m$). For example, if $A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & -1 & 1 & 4 \end{bmatrix}$, then a right inverse for A is $D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ because $AD = \begin{bmatrix} 1 & 0 \end{bmatrix} = I_2$.

But if $E = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, then $AE = \begin{bmatrix} 1 & 0 \end{bmatrix} = I_2$ also, so E is another right inverse for A.

If A has a right inverse, it is not necessarily unique.

C is called a **left inverse** for a $m \times n$ matrix A if $CA = I_n$ (so C must be $n \times m$).

It turns out that the matrix A above has no left inverse (see below). This is no accident! The following theorem says that if A has both a right and a left inverse, then A must be square.

Theorem If A is $m \times n$ and if

i) D is a a right inverse for A (so $AD = I_m$) and

ii) C is a left inverse for A (so $CA = I_n$)

then $m = n$ (so A is square). Moreover, A is invertible and $A^{-1} = C = D$.

Proof Suppose A is $m \times n$.

If $AD = I_m$, then the equation $Ax = b$ has a solution for every possible b in \mathbb{R}^m (given a b, just let $x = Db$; then $Ax = A(Db) = I_m b = b$.

Therefore A has a pivot position in every row. This forces $m \leq n$, since every pivot position must be in a different column.

If $CA = I_n$, consider the equation $Ax = 0$. Then $CAx = C0 = 0$. But $CAx = I_n x = x$, so $x = 0$. In other words, $Ax = 0$ has a unique solution and therefore the columns of A must be linearly independent and therefore each column must be a pivot column. Since each pivot position must be in a different row, this forces $n \leq m$.
So, combining the two paragraphs gives that \(m = n \). Since \(A \) is now known to be square, the Invertible Matrix Theorem says that \(A \) is invertible and that \(C = D = A^{-1} \).