One way not to write a proof

Theorem If a point \(x \) in \((X, T) \) is not isolated, then every open set that contains \(x \) is infinite.

Proof Assume not: suppose \(x \) is not isolated and that there is a finite open set that contains \(x \).

Since \(x \) is not isolated, we can choose distinct points \(x_n \) such that \((x_n) \to x \).

(... details about why omitted for purposes of this example...)

If \(O \) is any open set that contains \(x \), the sequence \((x_n) \) is eventually in \(O \), so every open set \(O \) that contains \(x \) is infinite.

This contradicts our assumption that there is a finite open set that contains \(x \).

Therefore the theorem is true. ●

The proof (after filling in a couple of missing details) is logically correct — but the logic, at best, is unnecessarily confused. Here's an analysis of the logic in the preceding proof, beginning with labels on some of the same parts.

Theorem If \(x \) is not isolated in \((X, T) \), then every open set that contains \(x \) is infinite.

Proof Assume not: that \(x \) is not isolated and there is a finite open set that contains \(x \).

Since \(x \) is not isolated, we can choose distinct points \(x_n \) such that \((x_n) \to x \).

(...some details about why omitted for this example...)

If \(O \) is any open set that contains \(x \), the sequence \((x_n) \) is eventually in \(O \), so every open set \(O \) that contains \(x \) is infinite.

Since we assumed (\(\sim Q \)) that there is a finite open set that contains \(x \), we have contradicted our assumption.

Therefore the theorem is true. ●
The proof is presented as a “proof by contradiction.” But notice that the argument in the box, by itself, is a complete direct proof of the theorem. The boxed argument has logical form:

Assume P

Argue that $P \Rightarrow Q$

Therefore Q (as desired).

In the long version, the opening assumption $\sim Q$ is never actually used in the rest of the argument. It is there simply as a “straw man” to be contradicted at the end.

The complicated logic of the longer version is:

Assume P and $\sim Q$.

Argue that $P \Rightarrow Q$ (direct proof, not using assumption $\sim Q$)

Therefore Q

But this contradicts the assumption $\sim Q$

Since we got a contradiction, we conclude Q.

__

A “genuine” proof by contradiction would assume P and $\sim Q$ and use both assumptions to derive a contradiction of some known previous known result:

For example: Assume P and $\sim Q$.

(Argument using both of these assumptions) ..., so $\sqrt{2}$ is rational.

But this is impossible, so our assumption was wrong.