Math 131, Spring 2004
The Last One!, Discussion Section A (Thursday, 11:00-12:00)

Quiz problems should be solved using the methods discussed in this course. A calculator is not permitted. To receive full credit, show enough work to make it clear how you got your answer.

Name: Answer Key __________________________ ID# __________________________

1. Evaluate \(\int_0^3 \sqrt{9-x^2} \, dx \) by interpreting the integral in terms of areas.

So \(\int_0^3 \sqrt{9-x^2} \, dx \) is equal to the area of a circle with radius 3.

\[\text{ie } \int_0^3 \sqrt{9-x^2} \, dx = \frac{1}{4} \pi \cdot 3^2 = \frac{9}{4} \pi \]

2. Find the general indefinite integral: \(\int \frac{(x-1)(2+x^2)}{x} \, dx \).

\[\int \frac{(x-1)(2+x^2)}{x} \, dx = \int \frac{2x+x^3-2-x^2}{x} \, dx \]

\[= \int (2+x^2-\frac{2}{x}-x) \, dx \]

\[= \int 2 \, dx + \int x^2 \, dx - 2 \int \frac{1}{x} \, dx - \int x \, dx \]

\[= 2x + \frac{x^3}{3} - 2 \ln x - \frac{x^2}{2} + C \]
1. Estimate the area under the graph of \(f(x) = 9 - x^2 \) from \(x = 0 \) to \(x = 4 \) using four approximating rectangles with right endpoints. Sketch the graph and the rectangles.

\[f(x) = 9 - x^2 \]
\[\Delta x = \frac{b-a}{n} = \frac{4-0}{4} = 1 \]
\[R_4 = \sum_{i=1}^{4} f(x_i) \Delta x \]
\[= f(1) \cdot 1 + f(2) \cdot 1 + f(3) \cdot 1 + f(4) \cdot 1 \]
\[= 8 + 5 + 0 - 7 \]
\[= 6 \]

2. (a) (one point) Express
\[\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{2\pi}{n} \right) \sin \left(\frac{2\pi i}{n} \right) \]
as a definite integral.
\[\Delta x = \frac{b-a}{n} = \frac{2\pi}{n} \]
so choose \(b = 2\pi, \ a = 0 \)

Then
\[\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{2\pi}{n} \right) \sin \left(\frac{2\pi i}{n} \right) = \int_0^{2\pi} \sin x \, dx \]

b) (two points) Find \(\int_{\frac{3}{2}}^{3} f(x) \, dx \) if \(\int_{\frac{3}{2}}^{5} f(x) \, dx = 10 \), \(\int_{\frac{3}{2}}^{5} f(x) \, dx = 2 \), and \(\int_{\frac{3}{2}}^{5} 2f(x) \, dx = 8 \). Remember to show your work.

First note \(\int_{3}^{5} 2f(x) \, dx = 8 \) \(\Rightarrow \int_{3}^{5} f(x) \, dx = 4 \)

Now
\[\int_{0}^{5} f(x) \, dx = \int_{0}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx + \int_{3}^{5} f(x) \, dx \]
\[\Rightarrow 10 = -2 + \int_{2}^{3} f(x) \, dx + 4 \]
\[\Rightarrow 8 = \int_{2}^{3} f(x) \, dx \]
Quiz problems should be solved using the methods discussed in this course. A calculator is not permitted. To receive full credit, show enough work to make it clear how you got your answer.

Name: Answer Key
ID# ______________________

1. (a) (one point) Express \(\lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{2\pi}{n} \right) \cos \left(\frac{2\pi i}{n} \right) \) as a definite integral.

\[\int_{0}^{2\pi} \cos x \, dx \]

b) (two points) Find \(\int_{2}^{3} f(x) \, dx \) if \(\int_{0}^{5} f(x) \, dx = 8 \), \(\int_{2}^{5} f(x) \, dx = 1 \), and \(\int_{3}^{5} 2f(x) \, dx = 10 \). Remember to show your work.

\[\int_{0}^{5} f(x) \, dx = \int_{0}^{2} f(x) \, dx + \int_{2}^{3} f(x) \, dx + \int_{3}^{5} f(x) \, dx \]
\[\Rightarrow \int_{0}^{5} f(x) \, dx = -\int_{2}^{0} f(x) \, dx + \int_{2}^{3} f(x) \, dx + \frac{1}{2} \int_{3}^{5} 2f(x) \, dx \]
\[\Rightarrow \quad 8 = -1 + \int_{2}^{3} f(x) \, dx + 5 \Rightarrow \int_{2}^{3} f(x) \, dx = 4 \]

2. Evaluate \(\int \left(\frac{1}{x} + 2 \sec^2 x + \frac{1}{x^2} + 4e^x \right) \, dx \).

\[\int \left(\frac{1}{x} + 2 \sec^2 x + \frac{1}{x^2} + 4e^x \right) \, dx = \]
\[\frac{1}{x} \, dx + 2 \int \sec^2 x \, dx + \int \frac{1}{x^2} \, dx + 4 \int e^x \, dx = \]
\[\ln x + 2 \tan x - \frac{1}{x} + 4e^x + C \]