Part I consists of 14 multiple choice questions (worth 5 points each) and 5 true/false question (worth 1 point each), for a total of 75 points. Mark the correct answer on the answer card. For Part I, only the answer on the card will be graded.

1. If \(\lim_{x \to 0} \frac{\cos(3x) + bx - 1}{7x + \sin bx} = 8 \), what is \(b \)?

A) 0 \hspace{1cm} B) 1 \hspace{1cm} C) 4 \hspace{1cm} D) 7 \hspace{1cm} E) 9

F) −2 \hspace{1cm} G) −3 \hspace{1cm} H) −6 \hspace{1cm} I) −8 \hspace{1cm} J) −10

2. A spherical snowball melts in such a way its radius is decreasing at a rate of 3 cm/min at the instant when its radius is 20 cm. At that moment, how fast is its volume changing? (Round your answer to 1 decimal place.)

A) \(-24978.7\) cm\(^3\)/min \hspace{1cm} B) \(-14682.3\) cm\(^3\)/min \hspace{1cm} C) \(-15079.6\) cm\(^3\)/min

D) \(-23156.7\) cm\(^3\)/min \hspace{1cm} E) \(-16783.8\) cm\(^3\)/min \hspace{1cm} F) \(-15983.7\) cm\(^3\)/min

G) \(-14682.3\) cm\(^3\)/min \hspace{1cm} H) \(-14292.9\) cm\(^3\)/min \hspace{1cm} I) \(-12478.6\) cm\(^3\)/min

J) \(-24978.7\) cm\(^3\)/min
3. A certain cone is growing in such a way that its height is always twice its radius. Use differentials to estimate how much the volume changes as the radius grows from 10 m to 10.05 m. (Round your answer to 2 decimal places.)

A) 31.12 m³ B) 31.27 m³ C) 31.57 m³ D) 31.66 m³ E) 31.75 m³
F) 31.42 m³ G) 31.55 m³ H) 31.59 m³ I) 31.99 m³ J) 31.03 m³

4. Suppose \(f(x) = 2x^2 + x - 9 \). The Mean Value Theorem states that there is a number \(c \) between 0 and 3 with a certain property. What is \(c \)?

A) 0 B) 1 C) 2 D) \(\frac{5}{2} \) E) \(\frac{3}{2} \)
F) \(\frac{1}{2} \) G) \(\frac{5}{4} \) H) \(\frac{7}{4} \) I) \(\frac{9}{4} \) J) \(\frac{11}{4} \)
5. What is the slope of the tangent line to the curve \[\begin{cases} x = \sin t + \cos t \\ y = \sin t - \cos 2t \end{cases} \quad (0 \leq t \leq 2\pi)

at the point corresponding to \(t = \pi \)? (See the figure.)

A) \(-1 \)
B) \(-\frac{1}{2} \)
C) \(0 \)
D) \(\frac{1}{4} \)
E) \(\frac{1}{2} \)
F) \(\frac{3}{4} \)
G) \(1 \)
H) \(\frac{5}{4} \)
I) \(\frac{5}{2} \)
J) \(2 \)

6. There two times \(t \) in \([0, 2\pi]\) for which the curve \[\begin{cases} x = \sin t + \cos t \\ y = \sin t - \cos t \end{cases} \] has a vertical tangent line. What are those times? (Note: the equations are slightly different from the equations in problem #5.)

A) \(0, \pi \)
B) \(\frac{\pi}{4}, \frac{5\pi}{4} \)
C) \(\frac{\pi}{2}, \frac{3\pi}{2} \)
D) \(\frac{\pi}{6}, \frac{7\pi}{6} \)
E) \(\frac{\pi}{3}, \frac{4\pi}{3} \)
F) \(\frac{2\pi}{3}, \frac{5\pi}{3} \)
G) \(\frac{3\pi}{4}, \frac{7\pi}{4} \)
H) \(\frac{4\pi}{3}, \frac{10\pi}{3} \)
I) \(\pi, 2\pi \)
J) \(\frac{\pi}{3}, \frac{2\pi}{3} \)
7. The point \(P = (1, 1) \) is on the graph of \(2x \ln y + y \ln x = 0 \). What is the slope of the tangent line to the graph at \(P \)?

A) \(-2\) \quad B) \(-\frac{3}{2}\) \quad C) \(-1\) \quad D) \(-\frac{1}{2}\) \quad E) \(0\)

F) \(\frac{1}{2}\) \quad G) \(1\) \quad H) \(\frac{3}{2}\) \quad I) \(e\) \quad J) \(2e\)

8. A rectangular box has a base in which the length is always 3 times the width. What is the largest volume for such a box if its surface area (4 sides + top + bottom) must be 1152 in\(^2\)?

A) 1728 in\(^3\) \quad B) 512 in\(^3\) \quad C) 695 in\(^3\) \quad D) 1048 in\(^3\) \quad E) 1246 in\(^3\)

F) 1480 in\(^3\) \quad G) 1624 in\(^3\) \quad H) 1848 in\(^3\) \quad I) 2142 in\(^3\) \quad J) 2304 in\(^3\)
9. If \(f(x) = \ln\left(\frac{\sqrt[3]{2x+5} \cdot (3x+5)^5}{\sqrt{6x+5}}\right) \), what is \(f'(0) \)?

A) \(\frac{43}{10} \) B) \(\frac{21}{3} \) C) \(\frac{5}{2} \) D) \(\frac{41}{15} \) E) \(\frac{23}{25} \)

F) \(\frac{11}{17} \) G) \(\frac{3}{30} \) H) 0 I) \(\frac{4}{3} \) J) \(\frac{2}{3} \)

10. \(f \) is a function defined on the interval \([0, 5]\), and \(f(0) = f(5) = 1, \ f(3) = -1 \).

Suppose \(f'(x) = (x-1)(x-2)^2(x-3)^3(x-4)^4 \).

Then exactly three of the following statements are true. Which three are true?

i) \(f \) is increasing on the interval \(1 < x < 2\)

ii) \(f \) has a local min at \(x = 1 \)

iii) \(f \) has neither a local max nor a local min at \(x = 2 \)

iv) \(f \) has a local min at \(x = 3 \)

v) \(f \) has its absolute min at \(x = 3 \)

A) i, ii, iii B) i, ii, iv C) i, ii, v D) i, iii, iv E) i, iii, v

F) i, iv, v G) ii, iii, iv H) ii, iii, v I) ii, iv, v J) iii, iv, v
11. Suppose \(f(x) = \ln((\arctan x)^3) \) for \(x > 0 \). What is \(f'(1) \)? (Note: \(\arctan x \) is the “inverse tangent function” which the text sometimes also writes as \(\tan^{-1}x \).)

A) 0
B) \(\frac{6}{\pi} \)
C) \(\frac{1}{3} \)
D) \(\frac{2}{4} \)
E) \(\frac{3}{4} \)
F) \(\frac{1}{2} \)
G) \(\frac{3}{2\pi} \)
H) \(2\pi \)
I) \(\frac{3\pi}{4} \)
J) \(\frac{4\pi}{3} \)

12. On the interval \([1, 3]\), the absolute minimum of the function \(f(x) = \frac{x}{a} + \frac{a^2}{2x^2} \) occurs at \(x = 2 \). What is the absolute maximum value of \(f(x) \) on \([1, 3]\)?

A) \(\frac{5}{2} \)
B) 0
C) \(-2 \)
D) \(\frac{1}{2} \)
E) 2
F) 3
G) \(\frac{7}{2} \)
H) \(-\frac{3}{2} \)
I) \(-\frac{1}{2} \)
J) 1

F04M131.3.7
13. For $f(x) = 3x(x - 4)^{\frac{3}{2}}$, the derivative $f'(x) = (x - 4)^{-\frac{3}{2}}(5x - 12)$. What is the largest interval listed on which $f(x)$ is concave down? (For your convenience: the right endpoints in the intervals listed below are increasing as you advance through the list.)

A) $(-\infty, -\frac{5}{12})$
B) $(-\infty, 0)$
C) $(-\infty, \frac{6}{5})$
D) $(-\infty, 4^{1/3})$

E) $(-\infty, \frac{7}{4})$
F) $(-\infty, \frac{12}{5})$
G) $(-\infty, 3)$
H) $(-\infty, 4)$

I) $(-\infty, \frac{24}{5})$
J) $(-\infty, \frac{36}{5})$

14. If $\lim_{x \to \infty} (2x + 3)^{\left(\frac{1}{\ln(x)}\right)} = 10$, what is a ?
A) 1, B) ln 2, C) \(\frac{1}{\ln 2}\), D) ln 10, E) ln 3
F) \(\frac{1}{\ln 10}\), G) \(\frac{1}{\ln 3}\), H) \(\frac{1}{\ln 6}\), I) \(e\), J) \(e \ln 10\)
Questions 15-19 are “true/false” questions

15. \(\lim_{x \to \infty} (1 + \frac{1}{x})^{6x} = \infty \)

 A) True B) False

16. Mary drives the 280 miles from St. Louis to Kansas City in 5 hours. At some time during the trip she was traveling 56 miles/hr.

 A) True B) False

17. If \(c \) is a critical point of \(f \) and \(f''(c) > 0 \), then \(f(x) \) has an absolute minimum at \(x = c \).

 A) True B) False

18. There exists a differentiable function \(f \) such that \(f(5) = 200, f(1) = 0 \) and \(f'(x) > 60 \) for all \(x \).

 A) True B) False

19. \(\frac{d}{dx} \ln(8) = \frac{1}{8} \)

 A) True B) False
Part II: (25 points) In each problem, clearly show your solution in the space provided. “Show your solution” does not simply mean “show your scratch work” — you should cross out any scratch work that turned out to be wrong or irrelevant and, where appropriate, present a readable, orderly sequence of steps showing how you got the answer. Generally, a correct answer without supporting work may not receive full credit.

20. a) Find all the critical numbers for the function \(f(x) = e^x(x^2 - 3) \).

b) What are the absolute maximum and minimum values for \(f(x) = e^x(x^2 - 3) \) on the interval \([0, 2]\)? (Be sure to give the exact max and min values — although you can also include a decimal approximation for these values if you like.)
21. a) Find \(\frac{dy}{dx} \) if \(y = \log_a \left(\frac{2x}{x^2 + 1} \right) \) (No simplification is necessary after you get to a correct formula \(\frac{dy}{dx} = \ldots \))

b) Find \(\frac{dy}{dx} \) if \(y = x \arctan x \) (No simplification is necessary after you get to a correct formula \(\frac{dy}{dx} = \ldots \))

c) Find \(\lim_{x \to 0^+} \left(\frac{1}{x} - \csc x \right) \) (You must show the steps leading to an answer: a guess based on using a calculator is not adequate — although it is a way to check your work.)