EXAM I

Math 109 / Music 109A, Spring 2014

Name ___________________________ Id __________

Each problem is worth 10 points.

1. **Aural**: Notate the rhythm (one measure each).

 (a) \[\frac{4}{4} \]

 (b) \[\frac{12}{8} \]

 Circle the triad type.

 (c) \[
 \begin{array}{c}
 \text{major} \\
 \text{minor} \\
 \text{diminished} \\
 \text{augmented}
 \end{array}
 \]

 (d) \[
 \begin{array}{c}
 \text{major} \\
 \text{minor} \\
 \text{diminished} \\
 \text{augmented}
 \end{array}
 \]

2. Sketch the graphs of these functions by starting with a more basic function and applying one or more geometric transformations (shifts or stretches). Use the space on page 4 if you need it.

 (a) \[f(x) = -x^2 + 2 \]

 (b) \[g(x) = -1 + \cos \frac{x}{4} \]

3. For the following pairs of integers \(m, n \), find the numbers \(q \) and \(r \) whose existence is asserted in the division algorithm \(n = qm + r \):

 (a) \[7, -22 \]; \[-22 = -4 \cdot 7 + 6 \]

 \[q = -4 \quad r = 6 \]

 (b) \[3, 102\ell + 4 \], where \(\ell \) some integer.

 \[102\ell + 4 = (34\ell + 1) \cdot 3 + 1 \]

 \[q = 34\ell + 1 \quad r = 1 \]
4. Write the indicated note as a whole note, choosing and notating an appropriate clef.

(a) \[\text{F}_4 \]
(b) \[\text{A}_5^\# \]
(c) \[\text{B}_2^\# \]

5. For the set \(\{(a, b) \in \mathbb{Z}^2 \mid b \neq 0 \} \) show that the relation \(\sim \) defined by \((a, b) \sim (a', b') \) iff \(ab - a'b = 0 \) is an equivalence relation. Explain how the set of equivalence classes are in one-to-one correspondence with the set of rational numbers \(\mathbb{Q} \).

OR

For the set \(\mathbb{Z} \) and a fixed positive integer \(m \), show that the relation \(\equiv \) defined by \(k \equiv l \text{ iff } m \mid (k - l) \) is an equivalence relation. Explain why there are exactly \(m \) equivalence classes.

\[(i) \quad a b - a'b = 0 \quad \text{so} \quad (a, b) \sim (a', b') \quad \text{for any pair.} \]

Hence reflexive

\[(ii) \quad \text{Assume} \quad (a, b) \sim (a', b') \quad \text{Then} \quad a b' - a' b = 0 \quad \text{Multiply by} \quad -1 \quad \text{to get} \quad a b - a' b' = 0 \quad \text{Thus} \quad (b, b') \sim (a, b). \]

Hence symmetric

\[(iii) \quad \text{Assume} \quad (b, b') \sim (a, a') \quad \text{and} \quad (a', b') \sim (c, c') \quad \text{Then} \quad a b' - a' b = 0 \quad \text{Multiply by (equation b' = b')} \quad \text{and} \quad a c' - a' c = 0 \quad \text{Multiply by (equation c' = b')} \quad \text{add} \quad (a b - a' b) + (c' b - c b') = 0 \]

\[a b - a' b = 0 \quad \text{and} \quad a c' - a' c = 0 \]

\[\text{By b and add:} \quad (a b - a' b) + (c' b - c b') = 0 \]

\[a b - a' b = 0 \quad \text{and} \quad a c' - a' c = 0 \]

\[\text{Hence Transitive.} \]

Associate the class \([(a, b)] \) to \(\frac{a}{b} \in \mathbb{Q} \).

If \((a, b) \sim (a', b') \) then \(a b - a' b = 0 \quad \text{so} \quad \frac{a}{b} = \frac{a'}{b'} \), so this association does not depend on the class representative.

This defines a function \(\frac{a}{b} \rightarrow \mathbb{Q} \) (where \(S = \{(a, b) \in \mathbb{Z}^2 \mid b \neq 0 \}) \).
(i) \(k \equiv k \mod m \), so \(m \mid (k-k) \). Hence \(k \equiv k \). Hence reflexive.

(ii) Assume \(k \equiv l \). Then \(m \mid (k-l) \), so \(k-l = qm \) for some \(q \in \mathbb{Z} \).

Multiplying by \(-1\) yields \(l-k = -qm \), so \(m \mid (l-k) \), so \(l \equiv k \). Hence symmetric.

(iii) Assume \(k \equiv l \) and \(l \equiv r \). Then \(m \mid (k-l) \) and \(m \mid (l-r) \), so \(k-l = qm \) and \(l-r = pm \) for some \(q, p \in \mathbb{Z} \).

Adding these equations gives
\[
\begin{align*}
 k-l + l-r &= qm + pm \\
 k-r &= (q+p)m \text{ so } m \mid (k-r) \text{, so } k \equiv r.
\end{align*}
\]

Hence transitive.

For any \(k \in \mathbb{Z} \) we can write \(k = qm + r \), \(q, r \in \mathbb{Z} \) and \(0 \leq r < m \). Thus \(k-r = qm \) and \(m \mid (k-r) \) so \(k \equiv r \).

So any \(k \) is congruent to one of the numbers \(\{0, 1, 2, \ldots, m-1\} \). On the other hand no two of these \(r \) are congruent, since if \(r, r' \in \{0, 1, 2, \ldots, m-1\} \), \(r \neq r' \), \(r-r' \) is too small in absolute value to be divisible by \(m \). So \(\{0, 1, 2, \ldots, m-1\} \) is a complete set of equivalence classes, and there are \(m \) of them.
6. For the following modes and tonic notes, indicate the appropriate key signature on the given staff, taking note of the clef:

(a) Phrygian with tonic D

(c) Aeolian with tonic G7

7. Identify each chord in this major mode (Ionian) passage. Above the staff label each chord by root note class with suffix (e.g., B9). Below the staff, label each chord by root scale tone (e.g. bIII7).

8. Extend the following melody with two measures having the same rhythm, employing the following transformations. Do not write in a key change.

(a) diatonic up two scale tones in the second measure

(b) chromatic up a major third (from the original) in the third measure
9. Give the (total) duration in beats of:

(a) a doubly-dotted quarter note in $\frac{3}{2}$ time.

$$\frac{3}{2} \cdot \left(1 + \frac{1}{2} + \frac{1}{4}\right) = \frac{1}{2} \cdot \frac{7}{4} = \frac{7}{8}$$

(b) a sixteenth note in $\frac{9}{8}$ time (compound time signature).

$$\frac{1}{3} \cdot \frac{1}{16} = \frac{1}{48}$$

(c) a quarter note 5-tuplet in $\frac{4}{4}$ time.

$$k = \frac{5}{2^2 - 5 \leq 2^3 \leq 5} \quad \text{so} \quad n = 0 \quad \frac{1}{2^0} \text{ - note} = \text{whole note}$$

- Θ has $\frac{5}{4}$ beats

10. For the song *Mary Had A Little Lamb*, give the form (e.g., AABC) by dividing it into segments consisting of two bars. Locate and identify a translation other than that which comes from the overall form.

```
Mary had a little lamb, little lamb, little lamb,
Mary had a little lamb, his fleece was white as snow.
```

A B A' C

melodic transcription m. 2, 3
rhythmic translation m. 2, 3, 4
also m. 1, 7
retrogression 1st 5 notes