Homework 6
Math 109 / Music 109A, Spring 2015

Due Monday, April 13.

1. For each given note N and integer k: label N by letter and subscript (e.g., A♭₄); write on the staff the (12-chromatic) note M which best approximates the pitch having the integral interval (i.e., ratio) k with N. Label M by letter and subscript.

 (a) \[\text{\includegraphics{image1}} \]
 \[k = 6 \]

 (b) \[\text{\includegraphics{image2}} \]
 \[k = 5 \]

 (c) \[\text{\includegraphics{image3}} \]
 \[k = 7 \]

 (d) \[\text{\includegraphics{image4}} \]
 \[k = 13 \]

2. Calculate the 19-chromatic scales’s best approximation of the integral intervals 3, 5, 6, 7, and 9, and give the error in cents. Which if any of these intervals are rendered better by the 19-chromatic scale than by the 12-chromatic scale?

3. In the sequence of keyboard approximations of the integer ratios 1 through 13, find all sets of four adjacent notes which can be identified as one of the chords listed in Chapter 3. Look for other chords which appear within the entire sequence.

4. Prove that if \(y = f(t) \) has period \(P \), then \(y = f(t/c) \) \((c \neq 0)\) has period \(cP \).
5. Suppose the function \(y = f(t) \) is the periodic function of period \(P \) corresponding to a musical tone, and suppose the graph of \(y = f(t) \) is:

![Graph of y = f(t)](image)

For each of the functions below, sketch its graph and explain how its associated tone compares that of \(f(t) \).

(a) \(y = \frac{1}{2} f(t) \)
(b) \(y = f(2t) \)
(c) \(y = f(t) + c \)
(d) \(y = f(t + c) \)

6. Assuming \(A_4 \) is tuned to 440 Hz, find the value \(\alpha \) for which the pitch associated to the periodic function \(y = \sin(\alpha t) \), where \(t \) is time in seconds, is:

(a) middle C
(b) \(A_\sharp_2 \)
(c) \(D_\flat_6 \)
7. Find the period, frequency, amplitude, and phase shift for these functions, and express each in the form $A \sin(\alpha t) + B \cos(\alpha t)$:

(a) $f(t) = 5 \sin(30\pi t + \frac{\pi}{4})$

(b) $g(t) = \sqrt{2} \sin(800 t + \pi)$

8. Find the period, frequency, amplitude, and phase shift for these functions, and express each in the form $d \sin(\alpha t + \beta)$:

(a) $f(t) = 4 \sin(300t) + 5 \cos(300t)$

(b) $h(t) = -\sin(1500\pi t) + 3 \cos(1500\pi t)$

9. A certain soprano’s ee vowel has a formant centered at 2900 Hz. What pitch should she sing in order for the fifth harmonic to be maximally amplified by this formant?
10. Two instruments play the keyboard pitches A₂ and E₃, making the
interval of a keyboard fifth. Suppose they are the same kind of in-
strument, and that the instrument has a formant centered at 3000
Hz. Suppose the formant amplifies pitches within 400 Hz of its center.
Identify the harmonics produced by each instrument which will be am-
plified by the formant, and give their frequencies. How many pairs of
these frequencies are almost aligned? Could this “near alignment” be
perfected by slightly adjusting the interval?