Exercise 1. Finish Proposition 8.2 by proving that \(\|f_k - g_0\|(N,\alpha) \to 0. \)

Exercise 2 (Folland, Exercise 8.3). Let \(\eta(t) = e^{-1/t} \chi_{(0,\infty)}. \)

- a. For \(k \in \mathbb{N} \) and \(t > 0 \), \(\eta^{(k)}(t) = P_k(1/t)e^{-1/t} \) where \(P_k \) is a polynomial of degree \(2k \).
- b. \(\eta^{(k)}(0) \) exists and equals zero for all \(k \in \mathbb{N} \).

Exercise 3. Prove that a function \(f \) is uniformly continuous iff \(\|\tau_y f - f\|_u \to 0 \) as \(y \to 0 \). (This assertion appears at the top of p. 238 in Folland.)

Exercise 4 (Folland, Exercise 8.4). If \(f \in L^\infty \) and \(\|\tau_y f - f\|_\infty \to 0 \) as \(y \to 0 \), then \(f \) agrees a.e. with a uniformly continuous function. (Hint: Let \(A_r f \) be as in Theorem 3.18. Show that \(A_r f \) is uniformly continuous for \(r > 0 \) and uniformly Cauchy as \(r \to 0 \).)

Exercise 5 (Folland, Exercise 8.7). If \(f \) is locally integrable on \(\mathbb{R}^n \) and \(g \in C^k \) has compact support, then \(f * g \in C^k \).