1. (1 pt) Solve the equation $5x + 1 = 3x + 9$.

 \[x = \]

2. (1 pt) Solve the equation for x

 \[5(x + 7) + 2 = -4(x - 4) - 2 \]

 \[x = \]

3. (1 pt) Solve the equation for t

 \[\frac{8}{3 - t} + \frac{4}{3 + t} + \frac{6}{9 - t^2} = 0 \]

 \[t = \]

4. (1 pt) By completing the square, the expression $x^2 + 8x + 87$ equals $(x + A)^2 + B$

 where A is: \[\]

 and B is: \[\]

5. (1 pt) By completing the square, the expression $x^2 - 14x + 33$ equals $(x + A)^2 + B$

 where A is: \[\]

 and B is: \[\]

6. (1 pt) The equation $x^2 + 2x - 19 = 0$ has two solutions A and B where $A < B$

 and A is: \[\]

 and B is: \[\]

7. (1 pt) The equation $4x^2 + 19x + 3 = 0$ has two solutions A and B where $A < B$

 and A is: \[\]

 and B is: \[\]

8. (1 pt) The real solution of the equation $x^3 = -27$ is: \[x = \]

9. (1 pt) The equation $x^4 - 36 = 0$ has two real solutions A and B where $A < B$

 and A is: \[\]

 and B is: \[\]

10. (1 pt) The equation $3x^4 - 3x^3 - 3x^2 = 0$ has three real solutions A, B, and C where $A < B < C$

 and A is: \[\]

 and B is: \[\]

 and C is: \[\]

11. (1 pt) Now for some review problems:

 Find the domain of this function:

 \[\sqrt[3]{-4 - 8x} \]

 (which reads the 3th root of $-4 - 8x$).

 The function is defined on the interval from \[\] to \[\].

 Use INF for infinity or -INF for minus infinity.

 Similar problems in the book: section 1.1/23-36

 Now find the domain of this function:

 \[\sqrt[4]{-4 - 8x} \]

 (which reads the 4th root of $-4 - 8x$).

 The function is defined on the interval from \[\] to \[\].

12. (1 pt) Solve the equation

 \[\frac{x + 1}{x - 1} = \frac{-11}{x + 3} + \frac{8}{x^2 + 2x - 3} \]

 Hint: There is only one non-extraneous root.

 \[x = \]

13. (1 pt) The equation $|5x - 25| = 30$ has two solutions.

 The sum of those two solutions is \[\] .

14. (1 pt) The equation $|6x + 24| = 36$ has two solutions.

 The distance between those two solutions is \[\] .

15. (1 pt) Solve the equation

 \[(x - 1)^{\frac{3}{2}} (x - 6) + 3(x - 1)^{\frac{1}{2}} = 0 \]

 \[x = \]