1. (1 pt) Consider the function \(f(x) = 2 - 5x^2 \) on the interval \([-4, 3]\). Find the average or mean slope of the function on this interval, i.e.
\[
\frac{f(3) - f(-4)}{3 - (-4)} =
\]
By the Mean Value Theorem, we know there exists a \(c \) in the open interval \((-4, 3)\) such that \(f'(c) \) is equal to this mean slope. For this problem, there is only one \(c \) that works. Find it.

2. (1 pt) Consider the function
\[
f(x) = -1x^3 + 3x^2 - 2x + 3
\]
Find the average slope of this function on the interval \((3, 5)\).
By the Mean Value Theorem, we know there exists a \(c \) in the open interval \((3, 5)\) such that \(f'(c) \) is equal to this mean slope. Find the value of \(c \) in the interval which works.

3. (1 pt) Consider the function \(f(x) = 2x^3 - 4x \) on the interval \([-5, 5]\). Find the average or mean slope of the function on this interval.
By the Mean Value Theorem, we know there exists at least one \(c \) in the open interval \((-5, 5)\) such that \(f'(c) \) is equal to this mean slope. For this problem, there are two values of \(c \) that work. The smaller one is _________ and the larger one is _________

4. (1 pt) Consider the function \(f(x) = 2x^3 - 3x^2 - 72x + 8 \) on the interval \([-6, 10]\). Find the average or mean slope of the function on this interval.

By the Mean Value Theorem, we know there exists a \(c \) in the open interval \((-6, 10)\) such that \(f'(c) \) is equal to this mean slope. For this problem, there are two values of \(c \) that work. The smaller one is _________ and the larger one is _________

5. (1 pt) Consider the function \(f(x) = \frac{1}{x} \) on the interval \([3, 6]\). Find the average or mean slope of the function on this interval.

By the Mean Value Theorem, we know there exists a \(c \) in the open interval \((3, 6)\) such that \(f'(c) \) is equal to this mean slope. For this problem, there is only one \(c \) that works. Find it.

6. (1 pt) Consider the function \(f(x) = 4\sqrt{x} + 5 \) on the interval \([4, 9]\). Find the average or mean slope of the function on this interval.

By the Mean Value Theorem, we know there exists a \(c \) in the open interval \((4, 9)\) such that \(f'(c) \) is equal to this mean slope. For this problem, there is only one \(c \) that works. Find it.