1. (1 pt) The goal of this exercise is to practice finding the inverse modulo m of some (relatively prime) integer n. We will find the inverse of 16 modulo 67, i.e., an integer c such that 16c \equiv 1 \pmod{67}.

First we perform the Euclidean algorithm on 16 and 67:

$$67 = 4 \cdot 16 + 3.$$

[Note your answers on the second row should match the ones on the first row.]

Thus \(\gcd(16, 67) = 1\), i.e., 16 and 67 are relatively prime.

Now we run the Euclidean algorithm backwards to write 1 as a linear combination of 16 and 67:

\[s = \quad t = 1 \]

when we look at the equation \(67s + 16t \equiv 1 \pmod{67}\), the multiple of 67 becomes zero and so we get

\[16t \equiv 1 \pmod{67}\].

Hence the multiplicative inverse of 16 modulo 67 is

\[\hat{y}_1 = \].

Thus for example, to find \(\hat{y}_1\), we need to solve

\[8789\hat{y}_1 \equiv 1 \pmod{3}\]

Since we know 8789 \(\equiv 2 \pmod{3}\), this simplifies to

\[2\hat{y}_1 \equiv 1 \pmod{3}\]

Solve this either by trial and error or by using the Euclidean algorithm and enter the value of \(\hat{y}_1\) below: (Use the canonical representative modulo 3.)

\[\hat{y}_1 = \].

Similarly, to find \(\hat{y}_2\) we need to solve

\[2397\hat{y}_2 \equiv 1 \pmod{11}\]

Since we know 2397 \(\equiv 10 \pmod{11}\), this simplifies to

\[10\hat{y}_2 \equiv 1 \pmod{11}\]

Solve this either by trial and error or by using the Euclidean algorithm and enter the value of \(\hat{y}_2\) below: (Use the canonical representative modulo 11.)

\[\hat{y}_2 = \].

Similarly, to find \(\hat{y}_3\) we need to solve

\[1551\hat{y}_3 \equiv 1 \pmod{17}\]

Since we know 1551 \(\equiv 4 \pmod{17}\), this simplifies to

\[4\hat{y}_3 \equiv 1 \pmod{17}\]

Solve this either by trial and error or by using the Euclidean algorithm and enter the value of \(\hat{y}_3\) below: (Use the canonical representative modulo 17.)

\[\hat{y}_3 = \].

Similarly, to find \(\hat{y}_4\) we need to solve

\[561\hat{y}_4 \equiv 1 \pmod{47}\]

Since we know 561 \(\equiv 1 \pmod{47}\), this simplifies to

\[44\hat{y}_4 \equiv 1 \pmod{47}\]

Solve this either by trial and error or by using the Euclidean algorithm and enter the value of \(\hat{y}_4\) below: (Use the canonical representative modulo 47.)

\[\hat{y}_4 = \].

Now that we have all the \(a_k, \hat{y}_k\) and \(\hat{y}_k\), use the formula

\[x = \sum_{k=1}^{n} a_k \hat{y}_k \hat{m}_k\]

to find an integer solution \(x\) to the original system. The Chinese remainder theorem says that this \(x\) and any integer congruent modulo \(m\) to it, will solve the original system.

Enter the SMALLEST positive integer solution to the original system here:

\[\].

2. (1 pt) Find the smallest positive integer \(x\) that solves the congruence:

\[10x \equiv 5 \pmod{63}\]

\[x = \].

(Hint: From running the Euclidean algorithm forwards and backwards we get \(1 = s(10) + t(63)\). Find \(s\) and use it to solve the congruence.)

3. (1 pt) We will find the smallest positive integer \(x\) that solves the following system of congruences via the Chinese Remainder Theorem:

\[x \equiv 1 \pmod{3}\]
\[x \equiv 5 \pmod{11}\]
\[x \equiv 12 \pmod{17}\]
\[x \equiv 12 \pmod{47}\]

In the language of Theorem 4 from page 142 of the 4th edition of Rosen, we thus have the values of the following variables:

\[a_1 = 1 \quad \text{and} \quad m_1 = 3\]
\[a_2 = 5 \quad \text{and} \quad m_2 = 11\]
\[a_3 = 12 \quad \text{and} \quad m_3 = 17\]
\[a_4 = 12 \quad \text{and} \quad m_4 = 47\]

The first step is to calculate \(m = m_1m_2m_3m_4\). When we do this we get:

\[m = \].

The second step is to calculate the \(\hat{m}_k\) which are given by the formula \(\hat{m}_k = \frac{m}{m_k}\). Enter their values below:

\[\hat{m}_1 = \]
\[\hat{m}_2 = \]
\[\hat{m}_3 = \]
\[\hat{m}_4 = \]

Next we find the \(\hat{y}_k\) which are given by solving

\[\hat{y}_k \hat{m}_k \equiv 1 \pmod{m_k}\]

Then we calculate

\[\hat{y}_1 \hat{m}_1 \equiv 1 \pmod{3}\]
\[\hat{y}_2 \hat{m}_2 \equiv 1 \pmod{11}\]
\[\hat{y}_3 \hat{m}_3 \equiv 1 \pmod{17}\]
\[\hat{y}_4 \hat{m}_4 \equiv 1 \pmod{47}\]

Thus for example, to find \(\hat{y}_1\), we need to solve

\[8789\hat{y}_1 \equiv 1 \pmod{3}\]

Since we know 8789 \(\equiv 2 \pmod{3}\), this simplifies to

\[2\hat{y}_1 \equiv 1 \pmod{3}\]

Solve this either by trial and error or by using the Euclidean algorithm and enter the value of \(\hat{y}_1\) below: (Use the canonical representative modulo 3.)

\[\hat{y}_1 = \].

Similarly, to find \(\hat{y}_2\) we need to solve

\[2397\hat{y}_2 \equiv 1 \pmod{11}\]

Since we know 2397 \(\equiv 10 \pmod{11}\), this simplifies to

\[10\hat{y}_2 \equiv 1 \pmod{11}\]

Solve this either by trial and error or by using the Euclidean algorithm and enter the value of \(\hat{y}_2\) below: (Use the canonical representative modulo 11.)

\[\hat{y}_2 = \].

Similarly, to find \(\hat{y}_3\) we need to solve

\[1551\hat{y}_3 \equiv 1 \pmod{17}\]

Since we know 1551 \(\equiv 4 \pmod{17}\), this simplifies to

\[4\hat{y}_3 \equiv 1 \pmod{17}\]

Solve this either by trial and error or by using the Euclidean algorithm and enter the value of \(\hat{y}_3\) below: (Use the canonical representative modulo 17.)

\[\hat{y}_3 = \].

Similarly, to find \(\hat{y}_4\) we need to solve

\[561\hat{y}_4 \equiv 1 \pmod{47}\]

Since we know 561 \(\equiv 1 \pmod{47}\), this simplifies to

\[44\hat{y}_4 \equiv 1 \pmod{47}\]

Solve this either by trial and error or by using the Euclidean algorithm and enter the value of \(\hat{y}_4\) below: (Use the canonical representative modulo 47.)

\[\hat{y}_4 = \].

Now that we have all the \(a_k, \hat{y}_k\) and \(\hat{y}_k\), use the formula

\[x = \sum_{k=1}^{n} a_k \hat{y}_k \hat{m}_k\]

to find an integer solution \(x\) to the original system. The Chinese remainder theorem says that this \(x\) and any integer congruent modulo \(m\) to it, will solve the original system.

Enter the SMALLEST positive integer solution to the original system here:

\[\].

4. (1 pt) Find the SMALLEST positive integer solution to the following system of congruences:

\[x \equiv 2 \pmod{5}\]
\[x \equiv 1 \pmod{7}\]

The solution is

\[\].

5. (1 pt) Use Fermat’s Little theorem to compute the following remainders for 3^{1921} (Always use canonical representatives.)

\[3^{1921} \equiv \pmod{5}\]
\[3^{1921} \equiv \pmod{7}\]
\[3^{1921} \equiv \pmod{11}\]
Use your answers above to find the canonical representative of $3^{1921} \mod 385$ by using the Chinese Remainder Theorem. [Note $385 = 5 \cdot 7 \cdot 11$ and that Fermat’s Little Theorem cannot be used to directly find $3^{1921} \mod 385$ as 385 is not a prime and also since it is larger than the exponent.]

$3^{1921} \mod 385$ is __________.

6. (1 pt) Fill in the blanks in the table with the unique integers a in the range $0 \leq a \leq 27$ with the given remainders.

Hint: It is probably easiest to just make a table with the numbers between 0 and 27 and their remainders and use that to find the answers. However one can also use the Chinese Remainder Formula $x = a_1\tilde{m}_1\tilde{y}_1 + a_2\tilde{m}_2\tilde{y}_2$ by finding the \tilde{m}_k, \tilde{y}_k once and then plugging in the various remainders for the a_k to get the various answers.

<table>
<thead>
<tr>
<th>a</th>
<th>$a \mod 4$</th>
<th>$a \mod 7$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

7. (1 pt) (Modification of exercise 36 in section 2.5 of Rosen.)

The goal of this exercise is to work thru the RSA system in a simple case:

We will use primes $p = 41, q = 61$ and form $n = 41 \cdot 61 = 2501$. [This is typical of the RSA system which chooses two large primes at random generally, and multiplies them to find n. The public will know n but p and q will be kept private.]

Now we choose our public key $e = 13$. This will work since $\gcd(13, (p-1)(q-1)) = \gcd(13, 2400) = 1$. [In general as long as we choose an ‘e’ with $\gcd(e,(p-1)(q-1))=1$, the system will work.]

Next we encode letters of the alphabet numerically say via the usual:

(A=0,B=1,C=2,D=3,E=4,F=5,G=6,H=7,I=8,
 J=9,K=10,L=11,M=12,N=13,O=14,P=15,Q=16,R=17,
 S=18,T=19,U=20,V=21,W=22,X=23,Y=24,Z=25.)

We will practice the RSA encryption on the single integer 15. (which is the numerical representation for the letter "P"). In the language of the book, $M=15$ is our original message.

The coded integer is formed via $c = M^e \mod n$. Thus we need to calculate $15^{13} \mod 2501$.

This is not as easy as it seems and you might consider using fast modular multiplication.

The canonical representative of $15^{13} \mod 2501$ is __________.