1. (1 pt)
Find the determinant of the matrix
\[A = \begin{bmatrix} -2 & -2 \\ 7 & -3 \end{bmatrix} \]
\[\text{det}(A) = \quad \]

2. (1 pt)
Find the determinant of the matrix
\[B = \begin{bmatrix} 2 & -3 & 1 \\ 4 & 4 & 5 \\ -3 & 4 & -5 \end{bmatrix} \]
\[\text{det}(B) = \quad \]

3. (1 pt)
Find the determinant of the matrix
\[C = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & -3 & -3 & 0 \\ 1 & 1 & -1 & -2 \\ 2 & 1 & -2 & 1 \end{bmatrix} \]
\[\text{det}(C) = \quad \]

4. (1 pt) You’ll need to use formatted text mode in order to do this problem: click the ”formatted text” radio button at the bottom of the page and then click ”submit answer”.
If
\[A = \begin{pmatrix} -2 & -2 \\ 3 & 2 \end{pmatrix} \]
Then
\[\text{det}(A) = \quad \text{and} \quad A^{-1} = \begin{pmatrix} \quad \quad \\ \quad \quad \end{pmatrix} \]

5. (1 pt) You’ll need to use formatted text mode in order to do this problem: click the ”formatted text” radio button at the bottom of the page and then click ”submit answer”.
If
\[A = \begin{pmatrix} 0 & 2 \\ 1 & -4 \end{pmatrix} \]
Then
\[\text{det}(A) = \quad \text{and} \quad A^{-1} = \begin{pmatrix} \quad \quad \\ \quad \quad \end{pmatrix} \]

Find \(k \) such that the matrix
\[M = \begin{bmatrix} -3 & 5 & -1 \\ -6 & 6 & -6 \\ 1+k & -1 & 5 \end{bmatrix} \]
is singular.
\[k = \quad \]

9. (1 pt)
If \(A \) and \(B \) are \(4 \times 4 \) matrices, \(\text{det}(A) = 2 \), and \(\text{det}(B) = 4 \), then
\[\text{det}(AB) = \quad \]
\[\text{det}(-2A) = \quad \]
\[\text{det}(B^{-1}) = \quad \]
\[\text{det}(B^3) = \quad \]

10. (1 pt)
Consider the following general matrix equation:
\[\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \]
which can also be abbreviated as:
\[A = MX \]
By definition, the determinant of \(M \) is given by
\[\text{det}(M) = m_{11}m_{22} - m_{12}m_{21} \]
The following questions are about the relationship between the determinant of \(M \) and the ability to solve the equation above for \(A \) in terms of \(X \) or for \(X \) in terms of \(A \).
Check the boxes which make the statement correct:
If the \(\text{det}(M) \neq 0 \) then
- A. given any \(A \) there is one and only one \(X \) which will satisfy the equation.
- B. some values of \(X \) will have more than one value of \(A \) which satisfy the equation.
- C. given any \(A \) there is one and only one \(X \) which will satisfy the equation.
- D. some values of \(X \) will have no values of \(A \) which satisfy the equation.
- E. some values of \(X \) will have no values of \(A \) which satisfy the equation.
- F. some values of \(A \) (such as \(A = 0 \)) will allow more than one \(X \) to satisfy the equation.

Check the boxes which make the statement correct:
If the \(\text{det}(M) = 0 \) then
- A. there is no value of \(X \) which satisfies the equation when \(A = 0 \).
- B. some values of \(A \) (such as \(A = 0 \)) will allow more than one \(X \) to satisfy the equation.
- C. given any \(A \) the is one and only one \(X \) which will satisfy the equation.
• D. given any X there is one and only one A which will satisfy the equation.
• E. some values of A will have no values of X which will satisfy the equation.

Check the conditions that guarantee that $\det(M) = 0$:
• A. Given any A the is one and only one X which will satisfy the equation.
• B. There is some value of A for which no value of X satisfies the equation.
• C. When $A = 0$ there is more than one X which satisfies the equation.
• D. Given any X there is one and only one A which will satisfy the equation.