1. (1 pt) Determine whether the sequences are increasing, decreasing, or not monotonic. If increasing, enter 1 as your answer. If decreasing, enter -1 as your answer. If not monotonic, enter 0 as your answer.

 1. \(a_n = \frac{n-4}{n+3} \)
 2. \(a_n = \sqrt[n]{3n+4} \)
 3. \(a_n = \frac{2^n}{n^3} \)

2. (1 pt) Let \(f(x) = \frac{x}{x^2 + 9x + 13} \)

 A. Find the smallest real number \(r \) such that \(f(x) \) is decreasing for all \(x \) greater than \(r \).

 \(r = \)

 B. Find the smallest integer \(s \) such that \(f(n) \) is decreasing for all integers \(n \) greater than or equal to \(s \).

 \(s = \)

4. \(a_n = \frac{1}{3^n-9} \)