1. (1 pt) You are looking down at a map. A vector \(\mathbf{u} \) with \(|\mathbf{u}| = 9 \) points north and a vector \(\mathbf{v} \) with \(|\mathbf{v}| = 9 \) points northeast. The crossproduct \(\mathbf{u} \times \mathbf{v} \) points:

 A) south

 B) northwest

 C) up

 D) down

 Please enter the letter of the correct answer: ____________

 The magnitude \(|\mathbf{u} \times \mathbf{v}| \) = ____________

2. (1 pt) Let \(\mathbf{a} = (9, 9, 2) \) and \(\mathbf{b} = (4, 2, 10) \) be vectors.

Compute the cross product \(\mathbf{a} \times \mathbf{b} \). (_______, _______, _______)

3. (1 pt)
 If \(\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{l} \mathbf{k} \) and \(\mathbf{b} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} \), compute the cross product \(\mathbf{a} \times \mathbf{b} \).

 _________ \(\mathbf{i} \) + _________ \(\mathbf{j} \) + _________ \(\mathbf{k} \)

4. (1 pt) If \(\mathbf{a} = \mathbf{i} + 5\mathbf{j} + \mathbf{k} \) and \(\mathbf{b} = \mathbf{i} + 7\mathbf{j} + \mathbf{k} \), find a unit vector with positive first coordinate orthogonal to both \(\mathbf{a} \) and \(\mathbf{b} \).

 _________ \(\mathbf{i} \) + _________ \(\mathbf{j} \) + _________ \(\mathbf{k} \)

5. (1 pt) Find the area of the parallelogram with vertices (2,5), (3, 7), (6, 12), and (7, 14).

Prepared by the WeBWorK group, Dept. of Mathematics, University of Rochester, ©UR