Definition \(T : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is called a **linear** transformation if

for all \(u, v \) in \(\mathbb{R}^n \), and all scalars \(c \)

1) \[T(u + v) = T(u) + T(v) \] and

2) \[T(cu) = cT(u) \]

These same calculations work for any number of terms:

for example

\[T(cu + dv - ew) = T(cu + dv) - T(ew) = cT(u) + dT(v) - cT(w) \]
Example
\[T : \mathbb{R}^3 \to \mathbb{R}^2 \text{ where } T(x) = T(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} |x_1| \\ x_2 \end{bmatrix}. \] Is \(T \) linear?

\[u \quad v \quad u + v \]
\[T(u + v) = T(\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}) = T(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ but} \]

\[T(u) + T(v) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}. \]

Since \(T(u + v) \neq T(u) + T(v) \), \(T \) is not linear; part 1) in the definition fails to be true.

Note that also \(T(-2u) = T(\begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \neq \begin{bmatrix} -2 \\ 0 \end{bmatrix} = -2T(u) \), so that condition 2) in the definition of linear also fails to be true.

But to show that \(T \) is not linear, it is only necessary to show that one of the conditions 1), 2) in the definition

Can you find an example of a (nonlinear) mapping \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) where condition 1) is true but 2) is false? or where 2) is true but 1) is false?

Example \(T : \mathbb{R}^3 \to \mathbb{R}^3 \), \(T(x) = T(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \). Is \(T \) linear?

Geometrically \(T \) takes a point \(x \) in \(\mathbb{R}^3 \) and (by changing the third entry in the vector to 0) projects that point “straight down” to a point \(T(x) \) in the \(x_1-x_2 \) plane

Check algebraically whether 1) and 2) are both true.

1) If \(u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \) and \(v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \), then
\[T(u) = \begin{bmatrix} u_1 \\ u_2 \\ 0 \end{bmatrix} \text{ and } T(v) = \begin{bmatrix} v_1 \\ v_2 \\ 0 \end{bmatrix}, \text{ so} \]

\[T(u) + T(v) = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ 0 \end{bmatrix} \]

Now compute and compare:

\[T(u + v) = T(\begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ u_3 + v_3 \end{bmatrix}) = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ 0 \end{bmatrix} \]

Also

2) \[T(cu) = T(\begin{bmatrix} cu_1 \\ cu_2 \\ cu_3 \end{bmatrix}) = \begin{bmatrix} cu_1 \\ cu_2 \\ 0 \end{bmatrix} = c \begin{bmatrix} u_1 \\ u_2 \\ 0 \end{bmatrix} = cT(u) \]

Since 1) and 2) are both true, \(T \) is linear.

Example Let \(A \) be an \(m \times n \) matrix and define a transformation

\[T(\mathbf{x}) = A\mathbf{x} \quad (T \text{ is called a matrix transformation}) \]

\(T \) is linear because of properties we already know about the matrix-vector product:

\[T(u + v) = A(u + v) = Au + Av \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \text{ and} \]

\[T(cu) = A(cu) = cAu = cT(u) \]
For any linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^m$

Let $e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$, ..., $e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$

For every $x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, we can write $x = x_1 e_1 + x_2 e_2 + \ldots + x_n e_n$

Therefore

$$T(x) = x_1 T(e_1) + x_2 T(e_2) + \ldots + x_n T(e_n) \quad (*)$$

where (of course) each $T(e_i)$ is a vector in \mathbb{R}^n.

$(*)$ tells us a lot:

1) that every value $T(x)$ can be computed in we only know the values $T(e_1), T(e_2), \ldots, T(e_n)$

These n (vector) values determine the value of $T(x)$ for all other values of x.

2) that we can always write a linear transformation T as a matrix product:

$$T(x) = x_1 T(e_1) + x_2 T(e_2) + \ldots + x_n T(e_n)$$

$$= [T(e_1) \ T(e_2) \ldots \ T(e_n)] \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = A x,$$ where A is the $m \times n$ matrix

whose columns are the vectors $T(e_1), T(e_2), \ldots, T(e_n)$. A is called the standard matrix for the linear transformation T.

3) We can write down the standard matrix just by using the vectors $T(e_1), T(e_2), \ldots, T(e_n)$ as the columns for A.

Example (see class notes/text for more details)

In the earlier example where $T: \mathbb{R}^3 \to \mathbb{R}^3$ was projection onto the x_1-x_2 plane:

$$T(e_1) = e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad T(e_2) = e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad T(e_3) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

The standard matrix for the transformation is $A = [T(e_1) \ T(e_2) \ T(e_3)]$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

As a check, notice that $T(x) = Ax = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$, just as before.

Example $T: \mathbb{R}^2 \to \mathbb{R}^2$, where $T(x) = \text{“the reflection of} \ x \text{across the line} \ y = x\text{”}$

We argued in class (on geometric grounds) that the transformation is linear.

It’s easy to see geometrically that $T(e_1) = e_1$ and $T(e_2) = e_1$. Therefore the standard matrix for this transformation is

$$A = [T(e_1) \ T(e_2)] = [e_1 \ e_1] = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

A formula for T therefore is $T(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$.

The formula shows that reflecting a point (vector) across $y = x$ in \mathbb{R}^2 is the same as “reversing the coordinates.”

(Recall from precalculus or calculus; if a function $y = f(x)$ has an inverse function g, the graph of the inverse function is found by reflecting the graph of f across the line $y = x$. If a point (a, b) is on the graph pf f, then (b, a) is on the graph of g)
Example Let $T : \mathbb{R}^2 \to \mathbb{R}^2$, where $T(x) = \text{the vector obtained by rotating the vector } x\text{ around the origin through an angle } \theta$.

We argued in class (geometrically) that this transformation T is linear.

Therefore, there is a 2×2 matrix A such that $T(x) = Ax$ and $A = [T(e_1) \ T(e_2)]$.

(Draw a picture, as we did in class) The vector e_1 is represented by a arrow $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ from the origin. When e_1 is rotated by an angle θ, the tip of the arrow moves along the unit circle to a new position which now represents the vector $\begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$; and the vector e_2 is moved to the vector with coordinates $\begin{bmatrix} \cos \left(\frac{\pi}{2} + \theta \right) \\ \sin \left(\frac{\pi}{2} + \theta \right) \end{bmatrix}$.

Therefore the matrix $A = \begin{bmatrix} \cos \theta & \cos \left(\frac{\pi}{2} + \theta \right) \\ \sin \theta & \sin \left(\frac{\pi}{2} + \theta \right) \end{bmatrix}$. This is “correct” but the formula can be simplified using trig identities:

\[
\begin{align*}
\cos \left(\frac{\pi}{2} + \theta \right) &= \cos \left(\frac{\pi}{2} \right) \cos \theta - \sin \left(\frac{\pi}{2} \right) \sin \theta = -\sin \theta \\
\sin \left(\frac{\pi}{2} + \theta \right) &= \sin \left(\frac{\pi}{2} \right) \cos \theta + \cos \left(\frac{\pi}{2} \right) \sin \theta = \cos \theta
\end{align*}
\]

so $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

Of course, for a specific angle θ, the entries in A are specific numbers:

for example, $T(x) = \begin{bmatrix} \cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4} \end{bmatrix} x = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ represents a counterclockwise (= positive angle) rotation around the origin through an angle $\frac{\pi}{2} \ (90^\circ)$

Notice that this rotation moves $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and moves $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ to $\begin{bmatrix} -1 \\ 0 \end{bmatrix}$.

A clockwise rotation by $\frac{\pi}{2}$ requires using $\theta = -\frac{\pi}{2}$. The matrix for this linear transformation would be

\[
A = \begin{bmatrix} \cos \left(-\frac{\pi}{2} \right) & -\sin \left(-\frac{\pi}{2} \right) \\ \sin \left(-\frac{\pi}{2} \right) & \cos \left(-\frac{\pi}{2} \right) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.
\]

What are the vectors $T(e_1)$ and $T(e_2)$?