Part I, Multiple Choice, 5 points/problem: Circle the correct answer. Write your work on the test booklet. If you miss the question I will look at the work on your test booklet. If there's evidence of some progress toward solving the problem (not just a miscellany of jotted down formulas), you might receive some partial credit.

1. A sensor measures the temperature T of a cup of cooling coffee every 5 minutes. After 30 minutes, the data collected is:

<table>
<thead>
<tr>
<th>t (min)</th>
<th>T ($^\circ$F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>175</td>
</tr>
<tr>
<td>10</td>
<td>155</td>
</tr>
<tr>
<td>15</td>
<td>140</td>
</tr>
<tr>
<td>20</td>
<td>130</td>
</tr>
<tr>
<td>25</td>
<td>125</td>
</tr>
<tr>
<td>30</td>
<td>122</td>
</tr>
</tbody>
</table>

Use the midpoint approximation M_3 to estimate the average temperature of the coffee during this time period. (Round your answer to the nearest integer.)

A) 141° B) 142° C) 143° D) 144° E) 145° F) 146° G) 147° H) 148° I) 149° J) 150°

The average of $T(t)$ is given by $\frac{1}{30-0} \int_0^{30} T(t) \, dt$. To estimate the integral, we divide the interval $[0, 30]$ into 3 subintervals of equal length, with $\Delta x = 10$. The midpoints of the subintervals are 5, 15, 25, so $M_3 = (T(5) + T(15) + T(25)) \cdot \Delta x = 10(175 + 140 + 125) = 4400$, so the average value of $T(t)$ over $[0, 30] = \frac{1}{30} (4400) = 146.666... \approx 147^\circ$.
2. Suppose we approximate \(\int_1^\infty \frac{1}{x^2} \, dx \) with the integral \(\int_1^a \frac{1}{x^2} \, dx \). What is the smallest value of \(a \) for which the \(|\text{ERROR}| = |\int_1^\infty \frac{1}{x^2} \, dx - \int_1^a \frac{1}{x^2} \, dx| \leq 0.001\)?

A) 6
B) \(5\sqrt{3}\)
C) \(5\sqrt{10}\)
D) 10
E) \(\sqrt{20}\)
F) \(\sqrt{30}\)
G) \(10\sqrt{5}\)
H) 20
I) \(20\sqrt{2}\)
J) \(4\sqrt{10}\)

\[
\int_1^\infty \frac{1}{x^2} \, dx \text{ converges, and for any } a > 1, \int_1^\infty \frac{1}{x^2} \, dx = \int_1^a \frac{1}{x^2} \, dx + \int_a^\infty \frac{1}{x^2} \, dx \text{ so } \left|\int_1^\infty \frac{1}{x^2} \, dx - \int_1^a \frac{1}{x^2} \, dx\right| = \int_a^\infty \frac{1}{x^2} \, dx = \lim_{t\to\infty} \frac{1}{t^a} = \frac{1}{a^2}, \\
\text{Therefore we need } \frac{1}{a^2} \leq 0.001 = \frac{1}{1000}, \text{ so } 2a^2 \geq 1000 \text{ or } a \geq \sqrt{500} = 10\sqrt{5}.
\]

3. Suppose a point's motion along a path is described by a set of parametric equations

\[
\begin{align*}
x &= \sin(at) \\
y &= \cos(at)
\end{align*}
\]

for \(0 \leq t \leq \pi\).

During this time interval, the point traveled 8 units along the path. What is the value of \(a\)?

A) \(\pi\)
B) \(2\pi\)
C) \(\frac{\pi}{2}\)
D) \(\frac{2}{\pi}\)
E) \(\frac{2}{2\pi}\)
F) \(\frac{\sqrt{2}\pi}{2}\)
G) \(\frac{8}{\pi}\)
H) \(\frac{\pi}{10}\)
I) \(\frac{3}{4\pi}\)
J) \(\frac{3}{2\pi}\)

The distance traveled along the path is

\[
s = \int_0^\pi \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \, dt = \int_0^\pi \sqrt{(\cos(at))^2 + (-a\sin(at))^2} \, dt = \int_0^\pi \sqrt{a^2(\cos^2(at) + \sin^2(at))} \, dt = \int_0^\pi a \, dt = a\pi = 8, \text{ so } a = \frac{8}{\pi}.
\]
4. If we use the method of partial fractions to break up \(\frac{x+1}{(x^2+x+1)(x-3)} = \frac{Ax+B}{x^2+x+1} + \frac{C}{x-3} \), what is the value of \(C \)?

A) \(\frac{1}{2} \) B) \(\frac{12}{7} \) C) \(-\frac{2}{3} \) D) \(\frac{4}{13} \) E) \(\frac{2}{15} \)

F) \(\frac{1}{3} \) G) \(-\frac{2}{7} \) H) \(\frac{3}{8} \) I) \(-\frac{7}{12} \) J) \(-\frac{5}{3} \)

We have \(\frac{x+1}{(x^2+x+1)(x-3)} = \frac{Ax+B}{x^2+x+1} + \frac{C}{x-3} = \frac{(Ax+B)(x-3)+C(x^2+x+1)}{(x^2+x+1)(x-3)} \). Since the denominators of the left and right fractions are the same, the numerators must be equal:

\[x + 1 = (Ax + B)(x-3) + C(x^2 + x + 1) \text{ for all } x. \]

Substituting \(x = 3 \), this becomes \(4 = C(13) \), so \(C = \frac{4}{13} \). (Similarly, we could find \(A = -\frac{4}{13} \) and \(B = -\frac{3}{13} \)).

5. If you run the following m-file in Matlab, what is the result “ans” displayed in the workspace window?

\begin{verbatim}
 i=0;
 for n=1:5
 i=i+1;
 x=linspace(0,2,n);
 y=x.^2;
 dx=2/n;
 q(i)=sum(x.*y)*dx;
 end
 q(3)
\end{verbatim}

A) 0 B) 1 C) 2 D) 3 E) 4
F) 5 G) 6 H) 7 I) 8 J) 9

The variable “i” keeps track of the number of trips through the loop and the result of calculating the value of \(\sum(x.*y)*dx \) is stored in \(q(i) \) = the \(i^{th} \) entry in the array \(q \). \(q(3) \) is the valued computed for \(\sum(x.*y)*dx \) on the \(3^{rd} \) trip through the loop, that is, when \(n=3 \).

When \(n=3 \), we have \(x=linspace(0,2,3)=[0,1,2] \), so \(y=[0,1,4] \). Then \(\sum(x.*y)=\sum([0,1,8])=9 \). Since \(dx=2/3 \), \(\sum(x.*y)*dx=9(2/3)=6 \).

6. Find the value of \(\int_{1}^{\infty} \frac{x+\sqrt{x}}{x^3} \, dx \) (if it converges).
\[\int_1^\infty \frac{x + \sqrt{x}}{x^2} \, dx = \int_1^\infty \frac{x}{x^2} \, dx + \int_1^\infty \frac{\sqrt{x}}{x^2} \, dx = \int_1^\infty \frac{1}{x^2} \, dx + \int_1^\infty \frac{1}{x^{3/2}} \, dx = \lim_{t \to \infty} \left(-\frac{1}{x} \right)_1^t + \lim_{t \to \infty} \left(-\frac{2}{3} \frac{1}{x^{3/2}} \right)_1^t = 1 + \frac{2}{3} = \frac{5}{3}. \]
7. The base of a solid is the region in the plane above the x-axis and under the graph of $y = 4 - x^2$. The cross sections of the solid perpendicular to the y-axis are squares. What is the volume of the solid?

A) 16 B) 8 C) 24 D) 36 E) 45
F) 5 G) 12 H) 15 I) 14 J) 32

The base of the solid is pictured below. One edge of the cross-section of the solid, ⊥ to the y-axis at a point y ($0 \leq y \leq 4$), is pictured. From the equation, its total width is $2\sqrt{4 - y}$. Therefore the area of the square cross-section at y is $A(y) = (2\sqrt{4 - y})^2 = 4(4 - y)$. So the volume $V = \int_0^4 4(4 - y) \, dy = 4(y - \frac{y^2}{2})|_0^4 = 4((16 - 8) - (0 - 0)) = 32$ (units3).
8. The graph pictured below is a piece of some cubic polynomial
\[y = f(x) = ax^3 + bx^2 + cx + d. \] We approximate \(\int_0^1 f(x) \, dx \) with 10 subdivisions using several different methods. Arrange the resulting approximations \(R_{10}, S_{10}, L_{10}, T_{10} \) in order of increasing size.

Since \(f^{(4)}(x) = 0 \), we know that
\[|\int_0^1 f(x) \, dx - S_{10}| \leq \frac{0(1-0)^5}{180(10)^5} = 0, \] that is,
\[S_{10} = \int_0^1 f(x) \, dx. \] Since \(f(x) \) is increasing, \(L_{10} < S_{10} < R_{10} \). Since the graph is concave up, \(T_{10} > \int_0^1 f(x) \, dx = S_{10} \). But since \(T_{10} \) is the average of \(L_{10} \) and \(R_{10} \), we know that \(T_{10} < R_{10} \).

Therefore \(L_{10} < S_{10} < T_{10} < R_{10} \).
9. A tank 20 m tall is shaped like a cylinder with a circular base. The base has radius 10 m. It is half full of water (which has a mass of 1000 kg/m³). How much work is done in pumping the water out of the tank by lifting it up to the top?

A) 2.32 × 10⁶ J
B) 2.11 × 10⁶ J
C) 4.11 × 10⁷ J
D) 4.62 × 10⁶ J
E) 1.34 × 10⁸ J
F) 7.43 × 10⁷ J
G) 5.13 × 10⁶ J
H) 9.14 × 10⁷ J
I) 7.22 × 10⁸ J
J) 8.32 × 10⁸ J

Let \(y = 0 \) be the bottom of the tank and \(y = 20 \) the top. At any height \(y, \) \(0 \leq y \leq 10, \) we look at a cross-sectional slice of the water. The slice is circular and has area \(A(y) = \pi \cdot 10² = 100\pi. \) Therefore a “thin slice” of the water has volume \(A(y) \, dy = 100\pi \, dy \) (m³) and the water in this slice has mass \(1000 \cdot 100\pi \, dy = 10^5 \pi \) kg. The weight of this water is \(9.8(10^5\pi \, dy) \) newtons, and it must be lifted approximately a distance of \((20 - y) \) m to lift it to the top of the tank, which requires \((20 - y) \cdot 9.8(10^5\pi \, dy) \) Joules of work. “Summing this up”, the work required is

\[
W = \int_0^{10} (20 - y) \cdot 9.8(10^5\pi \, dy) = 9.8(10^5\pi)\int_0^{10} 20 - y \, dy = 9.8(10^5\pi)(20y - \frac{y^2}{2})\bigg|_0^{10} = 9.8(10^5\pi)(150) \approx 4.62 \times 10^8 \text{ J}
\]

10. If \(a > 0, \) find \(\int_0^a \frac{\ln x}{x} \, dx \) (if the integral converges).

A) 0
B) \frac{1}{a}
C) 2a
D) \frac{\ln a}{a}
E) 2 \ln a
F) a \ln a
G) \frac{1}{2} \ln a
H) \ln(2a)
I) a \ln a - a
J) integral diverges

The integral is improper because \(\frac{\ln x}{x} \) has a vertical asymptote at \(x = 0. \)

If we let \(u = \ln x, \) \(du = \frac{1}{x} \, dx, \) then

\[
\int \frac{\ln x}{x} \, dx = \int u \, du = \frac{u^2}{2} + C = \frac{(\ln x)^2}{2} + C.
\]

So

\[
\int_0^a \frac{\ln x}{x} \, dx = \lim_{t \to 0^+} \int_t^a \frac{\ln x}{x} \, dx = \lim_{t \to 0^+} \frac{1}{2}(\ln x)^2\bigg|_t^a = \lim_{t \to 0^+} \frac{1}{2}((\ln a)^2 - (\ln t)^2) = -\infty.
\]

So the integral diverges.
11. The semicircle pictured has center \(C \) at \(x = 5 \) on the \(x \)-axis. The region under the semicircle and above the line \(y = 3x \) is revolved around the \(x \)-axis. What is the volume of the resulting solid of revolution?

\[\text{The circle with center } (5, 0) \text{ and radius } 5 \text{ has equation } (x - 5)^2 + y^2 = 25, \text{ so the semicircle pictured has equation } y = \sqrt{25 - (x - 5)^2}. \]

The semicircle and the line intersect where \(3x = \sqrt{25 - (x - 5)^2} \). Squaring both sides we get \(9x^2 = 25 - (x - 5)^2 = 25 - x^2 + 10x - 25 \), so that \(10x^2 - 10x = 10x(x - 1) = 0 \) and \(x = 0 \) or \(x = 1 \).

The volume of the solid is given by

\[
\int_0^1 \pi ((\text{outer radius})^2 - (\text{inner radius})^2) \, dx = \int_0^1 \pi ((25 - (x - 5)^2 - 9x^2) \, dx = \int_0^1 \pi (10x - 10x^2) \, dx = 10\pi \left(\frac{x^2}{2} - \frac{x^3}{3} \right) \bigg|_0^1 = 10\pi \left(\frac{1}{2} - \frac{1}{3} \right) = \frac{10\pi}{6} = \frac{5\pi}{3} \text{ (units}^3\text{)}
\]
12. A piece of the text's Table of Integrals is attached as the last page of the exam booklet. (You can tear it off.) Use it to find the value of \(\int_{\ln 3}^{\ln 9} \frac{\sqrt{e^{2x} - 9}}{e^x} \, dx \).

A) \(\frac{9}{2} \ln 9 - 3 \sqrt{72} + \frac{9}{2} \ln 3 \)

B) \(\frac{9}{5}(153) \sqrt{72} - \frac{9}{8} \ln (9 + \sqrt{72}) - \frac{9}{8} \ln 3 \)

C) \(\sqrt{72} - 3 \cos^{-1} (\frac{1}{3}) - \frac{3\pi}{4} \)

D) \(\ln (9 + \sqrt{72}) - \frac{\sqrt{72}}{9} - \ln 3 \)

E) \(\ln(9 + \sqrt{72}) - \ln 3 \)

F) \(3 \sqrt{72} + \frac{9}{2} \ln (9 + \sqrt{72}) - \frac{9}{2} \ln 3 \)

G) \(\frac{\sqrt{72}}{81} \)

H) \(\frac{3}{9 \sqrt{72}} - \frac{1}{\sqrt{72}} \)

I) \(\sqrt{72} \cos^{-1} 3 - \frac{3\pi}{4} \)

J) \(- \frac{1}{9} \ln \left(\frac{9 + \sqrt{72}}{9} \right) \)

To get a \(\sqrt{u^2 - 9} \) in the integral, we substitute \(u = e^x \), \(du = e^x \, dx \), so that \(dx = \frac{1}{u} \, du \). When \(x = \ln 9 \), \(u = e^{\ln 9} = 9 \), and when \(x = \ln 3 \), \(u = 3 \). Therefore

\[
\int_{\ln 3}^{\ln 9} \frac{\sqrt{e^{2x} - 9}}{e^x} \, dx = \int_3^9 \frac{\sqrt{u^2 - 9}}{u} \, du.
\]

Using Formula #42 from the table gives

\[
\int_3^9 \frac{\sqrt{u^2 - 9}}{u} \, du = - \frac{\sqrt{u^2 - 9}}{u} \left| u + \sqrt{u^2 - 9} \right| \bigg|_3^9 = - \frac{\sqrt{72}}{9} + \ln (9 + \sqrt{72}) - \ln 3.
\]

This is answer D) above. However note that the answer could have been simplified:

\[
- \frac{\sqrt{72}}{9} + \ln (9 + \sqrt{72}) - \ln 3 = - \frac{6 \sqrt{2}}{9} + \ln \left(\frac{9 + \sqrt{72}}{3} \right) = - \frac{2 \sqrt{2}}{3} + \ln \left(\frac{9 + 6 \sqrt{2}}{3} \right) = \ln (3 + 2 \sqrt{2}) - \frac{2 \sqrt{2}}{3}
\]
13. Find the length of the graph of \(y = x^2 - \frac{1}{8} \ln x \) over the interval \(1 \leq x \leq 2 \).

(Hint: the expression that shows up under the square root is a perfect square.)

A) \(2 - \ln 2 \)
B) \(3 + \ln 3 \)
C) \(1 + \ln 2 \)
D) \(3 + \frac{1}{8} \ln 2 \)
E) \(\ln 2 \)
F) \(2 + \ln 3 \)
G) \(4 - \ln 3 \)
H) \(1 + \frac{3}{8} \ln 2 \)
I) \(2 + \frac{1}{4} \ln 2 \)
J) \(2 + \frac{1}{4} \ln 3 \)

\[
\frac{du}{dx} = 2x - \frac{1}{8x}, \text{ so } L = \int_1^2 \sqrt{1 + \left(\frac{du}{dx}\right)^2} \, dx = \int_1^2 \sqrt{1 + (2x - \frac{1}{8x})^2} \, dx = \\
\int_1^2 \sqrt{1 + 4x^2 - \frac{1}{2} + \frac{1}{64x^2}} \, dx = \int_1^2 \sqrt{4x^2 + \frac{1}{2} + \frac{1}{64x^2}} \, dx = \text{(use the hint, and the fact that this expression is so similar to the square } 4x^2 - \frac{1}{2} + \frac{1}{64x^2} \text{ in the preceding expression!)} \\
= \int_1^2 \sqrt{(2x + \frac{1}{8x})^2} \, dx = \int_1^2 2x + \frac{1}{8x} \, dx = (x^2 + \frac{1}{8} \ln x)|_1^2 = \\
(4 + \frac{1}{8} \ln 2) - (1 + \frac{1}{8} \ln 1) = 3 + \frac{1}{8} \ln 2.
\]

14. The integral \(\int_0^\infty \frac{1}{(4-2x)^{1/2}} \, dx \) is improper if \(1 - 2k > 0 \), that is, if \(k < \frac{1}{2} \). For what values of \(k < \frac{1}{2} \) does the integral converge?

A) \(-1 < k < \frac{1}{2} \)
B) \(-1 \leq k < \frac{1}{2} \)
C) \(-2 < k < \frac{1}{2} \)
D) \(-2 \leq k < \frac{1}{2} \)
E) \(0 < k < \frac{1}{2} \)
F) \(0 \leq k < \frac{1}{2} \)
G) \(-\frac{3}{2} < k < \frac{1}{2} \)
H) \(-\frac{3}{2} \leq k < \frac{1}{2} \)
I) \(-\frac{1}{2} < k < \frac{1}{2} \)
J) \(-\frac{1}{2} \leq k < \frac{1}{2} \)

Let \(u = 4 - 2x \), \(du = -2 \, dx \), \(dx = -\frac{1}{2} \, du \). Then \(\int_0^\infty \frac{1}{u^{1/2}} \, dx = \\
-\frac{1}{2} \int_4^0 \frac{1}{u^{1/2}} \, du = \frac{1}{2} \int_0^4 \frac{1}{u^{1/2}} \, du = \frac{1}{2} \int_0^4 u^{2k-1} \, du = \frac{1}{2} \lim_{t \to 0^+} \int_t^4 u^{2k-1} \, du.
\]

If \(k \neq 0 \) (that is, if \(2k \neq 1 \neq -1 \)):

\[
\frac{1}{2} \lim_{t \to 0^+} \int_t^4 u^{2k-1} \, du = \frac{1}{2} \lim_{t \to 0^+} u^{2k-1} \bigg|_t^4 = 0.
\]

If \(2k > 0 \), then \(t^{2k} \to 0 \) as \(t \to 0^+ \), so the limit exists: integral converges.

If \(2k < 0 \), then \(t^{2k} \to \infty \) as \(t \to 0^+ \), so limit doesn't exist: integral converges.

If \(k = 0 : \frac{1}{2} \lim_{t \to 0^+} \int_t^4 u^{2k-1} \, du = \frac{1}{2} \lim_{t \to 0^+} \int_t^4 u^{1/2} \, du = \frac{1}{2} \lim_{t \to 0^+} u^{1/2} \bigg|_t^4 = \infty \), so the limit doesn't exist and the integral diverges.

Putting these observations together, the integral converges if \(0 < k < \frac{1}{2} \).
Part II, True or False, 1 point each (no partial credit here)

15. Suppose the thin plate bounded \(y = f(x) \) and \(y = g(x) \) \((0 \leq x \leq \pi)\), pictured below, has center of gravity at \((\bar{x}, \bar{y})\). Then the region bounded by \(y = 2f(x) \) and \(y = 2g(x) \) also has center of gravity at \((\bar{x}, \bar{y})\).

A) True
B) False

False: \(\bar{y} = \frac{\int_{0}^{\pi} \frac{1}{2}(f(x)^2 - g(x)^2) \, dx}{\int_{0}^{\pi} (f(x) - g(x)) \, dx} \) for the given region. If \(f \) and \(g \) are replaced by \(2f \) and \(2g \), then for the new “stretched” region, \(\bar{y}_{\text{new}} = \frac{\int_{0}^{\pi} \frac{1}{2}(2f(x)^2 - 2g(x))^2 \, dx}{\int_{0}^{\pi} (2f(x) - 2g(x)) \, dx} = \frac{4\int_{0}^{\pi} \frac{1}{2}(f(x)^2 - g(x)^2) \, dx}{2\int_{0}^{\pi} (f(x) - g(x)) \, dx} \)

\[= 2 \frac{\int_{0}^{\pi} \frac{1}{2}(f(x)^2 - g(x)^2) \, dx}{\int_{0}^{\pi} (f(x) - g(x)) \, dx} = 2\bar{y}.\]

16. The area between the graphs of \(y = \sin 4x \) and \(y = \tan x \) \((0 \leq x \leq \frac{\pi}{4})\) is given by \(\int_{0}^{\pi/4} \sin 4x - \tan x \, dx \).

A) True
B) False

False: The graphs cross at some point \(b \approx 0.6 \). The area is given by \(\int_{0}^{b} \sin 4x - \tan x \, dx + \int_{\pi/4}^{b} \tan x - \sin 4x \, dx \).
17. The graph of \(y = f(x) \) is shown. If we approximate the integral \(\int_{0}^{6} f(x) \, dx \) with Simpson’s approximation \(S_6 \) and also with the trapezoidal approximation \(T_3 \), then \(T_3 = 3S_6 \).

True: \(S_6 = \frac{1}{3} (f(0) + 4f(1) + 2f(2) + 4f(3) + 2f(4) + 4f(5) + f(6)) \)

(the “\(\frac{1}{3} \)” is \(\frac{\Delta x}{3} \))

But \(f(1) = f(3) = f(5) = 0 \), so in this case

\(S_6 = \frac{1}{3} (f(0) + 2f(2) + 2f(4) + f(6)) \)

\(T_3 = 1 \cdot (f(0) + 2f(2) + 2f(4) + f(6)) = (f(0) + 2f(2) + 2f(4) + f(6)) \)

(the “1” is \(\frac{\Delta x}{2} = \frac{2}{2} \)),

so \(3S_6 = T_3 \).
18. We can conclude that the integral \(\int_2^\infty \frac{e^{-x}}{3+x^2} \, dx \) converges by comparing it to the integral \(\int_2^\infty \frac{1}{x^p} \, dx \) which is known to converge.

\[A) \text{True} \quad B) \text{False} \]

True: On \((2, \infty)\), \(e^{-x} \leq 1 \), so \(\frac{e^{-x}}{3+x^2} \leq \frac{1}{3+x^2} \leq \frac{1}{x^2} \). Since \(x \geq 2 \), we know \(x^5 \geq x^2 \) so \(\frac{1}{x^5} \leq \frac{1}{x^2} \). Since \(\int_1^\infty \frac{1}{x^p} \, dx \) converges whenever \(p > 1 \), we conclude that \(\int_2^\infty \frac{1}{x^p} \, dx \) converges. Therefore the integral \(\int_2^\infty \frac{e^{-x}}{3+x^2} \, dx \) converges since \(\int_2^\infty \frac{e^{-x}}{3+x^2} \, dx \leq \int_2^\infty \frac{1}{x^2} \, dx \).

19. The graph shows the velocity function \(v(t) \) for a point moving along a straight line. You are given that for \(0 \leq t \leq 10 \), the displacement of the particle is 45 m. Then there are exactly six \(t \)-values at which the instantaneous velocity = average velocity for the trip.

\[\text{Velocity of a point moving along a straight line} \]

\[v \text{ (m/sec)} \]

\[t \text{ (sec)} \]

\[A) \text{True} \quad B) \text{False} \]

True: displacement = \(\int_0^{10} v(t) \, dt = 45 \), so average velocity = \(\frac{1}{10-0} \int_0^{10} v(t) \, dt = 45 = 4.5 \text{ m/sec} \), A horizontal line at height \(v = 4.5 \) intersects the graph of \(v(t) \) exactly 6 times.
Part III: These are “free response” problems worth a total of 25 points. Show your work neatly and cross out irrelevant scratchwork, false starts, etc.

20. Find \(\int \frac{1}{(x+1)(x+2)} \, dx \)

Use partial fractions: write

\[
\frac{1}{(x+1)(x+2)} = \frac{A}{x+1} + \frac{B}{x+2} = \frac{A(x+2)+B(x+1)}{(x+1)(x+2)}
\]

Equating the numerators gives

\[
A(x + 2) + B(x + 1) = 1 \text{ for all } x.
\]

Substituting

\[
x = -2 \quad \text{gives } B(-1) = 1 \text{ so } B = -1
\]

\[
x = -1 \quad \text{gives } A(1) = 1 \text{ so } A = 1
\]

Then

\[
\int \frac{1}{(x+1)(x+2)} \, dx = \int \frac{1}{x+1} - \frac{1}{x+2} \, dx = \ln |x+1| - \ln |x+2| + C = \\
\ln |\frac{x+1}{x+2}| + C
\]
21. a) Without computing S_2 or evaluating the integral, explain why Simpson's approximation S_2 gives the exact value for $\int_7^{10} x^2 - 9x + 3 \, dx$.

One reason: S_2 estimates $\int_7^{10} f(x) \, dx$ by approximating $f(x)$ over $[7, 10]$ with a parabola. Since $f(x) = x^2 - 9x + 3$ is a parabola to begin with, the “fit” is perfect and $S_2 = \int_7^{10} x^2 - 9x + 3 \, dx$.

Alternate reason: For $f(x) = x^2 - 9x + 3$, $f^{(4)}(x) = 0$, so we can use $K = 0$ in Simpson's error control formula, getting $|\int_7^{10} x^2 - 9x + 3 \, dx - S_2| \leq 0$, i.e., $S_2 = \int_7^{10} x^2 - 9x + 3 \, dx$.

b) Give a specific example another function $y = f(x)$ which is neither linear nor quadratic but for which S_2 gives the exact value $\int_7^{10} f(x) \, dx$. Explain (without actually computing S_2 and $\int_7^{10} f(x) \, dx$) why this is true.

Let $f(x) = x^3 + x^2 + x + 1$ (or any cubic polynomial). As in the “alternate reason” in part a), $f^{(4)}(x) = 0$ and the error control formula again gives $|\int_7^{10} f(x) \, dx - S_2| \leq 0$, so $S_2 = \int_7^{10} f(x) \, dx$.
c) Let \(f(x) = e^{-x/2} \). Find the fourth derivative \(f^{(4)}(x) \), and, on the grid below, draw a reasonable sketch of the graph of \(|f^{(4)}(x)|\) over the interval \([0, 1]\).

\[
\begin{align*}
 f'(x) &= -\frac{1}{2}e^{-x/2}, \\ f''(x) &= \frac{1}{4}e^{-x/2}, \\ f'''(x) &= -\frac{1}{8}e^{-x/2} \quad \text{and} \\ f^{(4)}(x) &= f^{(4)}(x) = \frac{1}{16}e^{-x/2}.
\end{align*}
\]

Since \(f^{(4)}(x) \geq 0 \), \(f^{(4)}(x) = |f^{(4)}(x)| \). Its graph is shown below. The crucial thing is that it is decreasing and that for \(0 \leq x \leq 1 \),
\[
|f^{(4)}(x)| \leq f^{(4)}(0) = \frac{1}{16} = 0.0625.
\]
d) If we approximate $\int_0^1 e^{-x/2} \, dx$ with Simpson's approximation S_4, then we can say that

$$|\text{ERROR}| = |\int_0^1 e^{-x/2} \, dx - S_4| \leq ?$$

(Find a value of ? that's as small as possible based on your graph above. Round your answer to 8 decimal places.)

Since $|f^{(4)}(x)| \leq \frac{1}{16} = K$, the Simpson “error control” formula gives

$$|\int_0^1 e^{-x/2} \, dx - S_4| \leq \frac{K(1-0)^5}{180(4^3)} \approx 0.00000136$$

e) Given that $S_4 = 0.78693975$ (rounded to 8 decimal places), use your result in d) to write an inequality stating:

$$?? \leq \int_0^1 e^{-x/2} \, dx \leq ??$$

(The values of ?? and ??? should be given rounded to 8 decimal places also.)

From b) (rounded to 8 places)

$$|\int_0^1 e^{-x/2} \, dx - S_4| \leq 0.00000136$$

$$-0.00000136 \leq \int_0^1 e^{-x/2} \, dx - S_4 \leq 0.00000136$$

$$S_4 - 0.00000136 \leq \int_0^1 e^{-x/2} \, dx \leq 0.00000136 + S_4.$$ Substituting $S_4 = 0.78693975$ gives

$$0.78693839 \leq \int_0^1 e^{-x/2} \, dx \leq 0.78694111$$