equicontinuous=uniformly equicontinuous, for brevity in the following.

(1) If \(\{f_n\}\) is an equicontinuous sequence of functions on a compact interval and \(f_n \to f\) pointwise, prove that the convergence is uniform.

First, we prove that \(f\) is uniformly continuous on the interval as follows. Given \(\epsilon > 0\), there exists a \(\delta > 0\) such that \(|f_n(x) - f_n(y)| < \epsilon\) if \(|x - y| < \delta\). For such \(x, y\), fixed, we can find an \(N \gg 0\) so that \(|f(x) - f_N(x)| < \epsilon\) and \(|f(y) - f_N(y)| < \epsilon\), by pointwise convergence. So, we get,

\[
|f(x) - f(y)| \leq |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| \leq 3\epsilon.
\]

Next we prove that the convergence is uniform. Given \(\epsilon > 0\), choose \(\delta > 0\) so that \(|f_n(x) - f_n(y)| < \epsilon\) and \(|f(x) - f(y)| < \epsilon\) if \(|x - y| < \delta\). Next, subdivide the interval into \(p\) intervals of length, say \(\delta/2\) and pick \(x_i\), \(1 \leq i \leq p\) in these intervals. Now, we can find an \(N \gg 0\) so that for all \(n \geq N\), \(|f_n(x_i) - f(x_i)| < \epsilon\) for all \(i\). If \(n \geq N\) and \(x\) is any point in the interval, choose an \(x_i\) so that both \(x, x_i\) belong to the same subdivision. Then,

\[
|f_n(x) - f(x)| \leq |f_n(x) - f_n(x_i)| + |f_n(x_i) - f(x_i)| + |f(x_i) - f(x)| \leq 3\epsilon.
\]

(2) If \(|f_n(x) - f_n(y)| \leq M|x - y|^{\alpha}\) for some fixed \(M\) and \(\alpha > 0\) and all \(x, y\) in a compact interval for all \(n\), show that \(\{f_n\}\) is equicontinuous.

Given \(\epsilon > 0\), choose \(\delta < (\epsilon/M)^{\frac{1}{\alpha}}\). (Note that if \(M = 0\), any choice of \(\delta\) will do.)

(3) Let \(\{f_n\}\) be a sequence of \(C^\infty\) functions on a compact interval such that for any integer \(k \geq 0\), there exists an \(M_k\) such that \(|f_n^{(k)}(x)| \leq M_k\) for all \(x\) and \(n\). Prove that there exists a subsequence converging uniformly, together with all its derivatives to a \(C^\infty\) function.

First, we prove that the sequence \(\{f_n^{(k)}\}\) is equicontinuous for all \(k\). We have \(f_n^{(k)}(x) - f_n^{(k)}(y) = f_n^{(k+1)}(z)(x - y)\) for some \(z\) between \(x, y\) by mean value theorem. Thus

\[
|f_n^{(k)}(x) - f_n^{(k)}(y)| = |f_n^{(k+1)}(z)||x - y| \leq M_{k+1}|x - y|,
\]

and the previous problem finishes the proof.

Now do the diagonal trick. By theorem proved in class, since \(\{f_n\}\) is equicontinuous and uniformly bounded (by \(M_0\)), we can find a subsequence \(f_{11}, f_{12}, \ldots\) which converges uniformly in the interval. The sequence \(\{f_{1n}'\}\) is also uniformly bounded and
equicontinuous, so we can extract a subsequence which is uniformly convergent. This means, there is a subsequence of \(\{ f_{1n} \} \), say \(\{ f_{2n} \} \) such that \(\{ f'_{2n} \} \) is uniformly convergent. We can continue this and get subsequences \(\{ f_{pn} \} \) such that \(\{ f'_{pn} \} \) is uniformly convergent. Finally, as in class, one checks that the subsequence \(f_{11}, f_{22}, \ldots \) has all the required properties.

(4) Prove that the set of all polynomials of degree at most \(N \) (fixed) and coefficients in \([-1, 1]\) is uniformly bounded and equicontinuous in any compact interval.

If \(P \) is any such polynomial and \(x \) is any point in our interval, we have \(P(x) = a_0 + a_1 x + \cdots + a_N x^N \) with \(|a_i| \leq 1 \) for all \(i \) and thus, \(|P(x)| \leq 1 + |x| + \cdots + |x|^N \) and the last term is a continuous function on a compact set and hence bounded, independent of the \(a_i, x \). So, we see that the family of these polynomials is uniformly bounded.

Again, if \(P \) is as above, for any two points \(x \neq y \) we have,

\[
|P(x) - P(y)| = |x - y||a_1 + a_2(x + y) + a_3(x^2 + xy + y^2) + \cdots + a_N \frac{x^N - y^N}{x - y}|
\]

\[
\leq |x - y|(1 + 2M + 3M^2 + \cdots + NM^{N-1})
\]

where \(M \) is a positive number such that \(|x| \leq M \) for all \(x \) in our compact interval. Rest is clear from an earlier problem.

(5) Prove that the family of polynomials \(P \) of degree at most \(N \) with \(|P(x)| \leq 1 \) on \([0, 1]\) is equicontinuous on \([0, 1]\).

We use a fact from the last homework. Let \(P_k \) be polynomials of degree at most \(N \) for \(0 \leq k \leq N \) such that \(\int_0^1 P_k x^j dx = 0 \) for all \(j \neq k \) and \(0 \leq j \leq N \) and \(\int_0^1 P_k x^k dx = 1 \). If \(P(x) = a_0 + a_1 x + \cdots + a_N x^N \) is any polynomial with \(|P(x)| \leq 1 \) for all \(x \in [0, 1] \), we see that \(a_k = \int_0^1 P_k P dx \) and thus \(|a_k| \leq \int_0^1 |P_k| dx = M_k \). So, all the coefficients are uniformly bounded and then the proof is exactly as in the previous problem.

(6) Let \(P_0 = 0 \) and \(P_{n+1}(x) = P_n(x) + \frac{x^2 - P_n^2(x)}{2} \).

(a) Prove that \(|x| - P_{n+1}(x) = (|x| - P_n(x)) \left(1 - \frac{|x| + P_n(x)}{2}\right)\). Deduce that \(0 \leq P_n(x) \leq P_{n+1}(x) \leq |x| \) if \(|x| \leq 1 \). The formula is obvious.

\[
|x| - P_{n+1}(x) = |x| - P_n(x) - \frac{x^2 - P_n^2(x)}{2}
\]

\[
= (|x| - P_n(x)) \left(1 - \frac{|x| + P_n(x)}{2}\right)
\]
Assume we have proved the result for \(n \), the initial case being obvious. Then we need to prove that \(P_n(x) \leq P_{n+1}(x) \leq |x| \). Since \(0 \leq P_n(x) \leq |x| \), we see that \(|x| \leq P_n(x) + |x| \leq 2|x| \) and thus,

\[
1 - \frac{|x|}{2} \geq 1 - \frac{|x| + P_n(x)}{2} \geq 1 - |x|.
\]

It is clear that this inequality implies what we need.

(b) Show that \(|x| - P_n(x) \leq |x|(1 - \frac{|x|}{2^n}) < \frac{2}{n+1} \) for \(|x| \leq 1 \).

The equation (1) above immediately implies the first part of inequality by induction. For the second part, check that the function \(x(1 - \frac{x}{2})^n \) attains its maximum at \(x = \frac{2}{n+1} \) in \([0, 1]\).

(c) Prove that \(\{P_n\} \) converges uniformly to the function \(g(x) = |x| \) in \([-1, 1]\).

Less said the better.