Homework 8

(1) Let A be an integral domain. Describe all ring automorphisms
\[\phi : A[X] \rightarrow A[X] \] and \[\psi : A[[x]] \rightarrow A[[x]] \] with $\phi(a) = a, \psi(a) = a$ for all $a \in A$.

(2) Let M be a module over $R = k[[x_1, \ldots, x_n]], k$ a field, which
is complete with respect to the maximal ideal m generated by
the x_i s. Assume that M/mM is a finite dimensional vector
space over $R/m = k$. Show that M is finitely generated over R. (One can easily deduce Weierstrass preparation theorem for
power series rings over a field from this.)

(3) Let R be an UFD and K its fraction field. Show that if $x \in K$
such that $x^n + a_1x^{n-1} + \cdots + a_n = 0$ with $a_i \in R$, then $x \in R$.
(This is usually described as UFDs are integrally closed).

(4) Let $R = \mathbb{C}[x, y], S = \mathbb{C}[[x, y]]$ and $F = y^2 - x^3, G = xy + (x+y)^3$.
(a) Show that F, G are irreducible in R.
(b) Show that neither $R/FR, R/GR$ is a UFD.
(c) Show that F is irreducible but G is not in S.