Homework 5

(1) Let $0 \to F_1 \to F_0 \to M \to 0$ be an exact sequence of A-modules for a commutative ring A. Recall that this means $F_0 \to M$ is onto, image of $F_1 \to F_0$ is equal to the kernel of $F_0 \to M$ and $F_1 \to F_0$ is injective. Show that for any multiplicative closed subset S, one has exact sequences, $0 \to S^{-1}F_1 \to S^{-1}F_0 \to S^{-1}M \to 0$ and for any ideal I, $F_1/IF_1 \to F_0/IF_0 \to M/IM \to 0$. For the latter you do not need to assume that $F_1 \to F_0$ is injective.

The localization part we checked in class. All of these are routine checking. So, let me check the second one.

Since given any element $\overline{m} \in M/IM$, we can find $m \in M$ such that $m \mapsto \overline{m}$ and there exists some $e \in F_0$ such that $e \mapsto m$ by surjectivity of $F_0 \to M$, it is easy to check that the image of e in F_0/IF_0 will map to \overline{m}, proving surjectivity of $F_0/IF_0 \to M/IM$.

If $\overline{e} \in F_0/IF_0$ goes to zero in M/IM where \overline{e} is the image of $e \in F_0$, it just means that image of e is in IM. So write image of $e = \sum a_i m_i$, where $a_i \in I, m_i \in M$. Then, by surjectivity of $F_0 \to M$, we can find $e_i \in F_0$ so that $e_i \mapsto m_i$. Since we can replace e by $e - \sum a_i e_i$, since both go to \overline{e}, we see that we can further assume that e actually maps to zero in M. But then, exactness says, we can find $f \in F_1$ which maps to e. The rest is easy.

(2) Let A be a Noetherian ring and M a finitely generated module over A. Define the support of M as

$$\text{Supp } M = \{P | P \text{ prime ideal, } M_P \neq 0\}.$$

We have defined in class the annihilator of M, $\text{Ann } M = \{a \in A | aM = 0\}$, minimal primes and associated primes of M.

(a) Show that $\text{Ass } M \subset \text{Supp } M$.

Let P be an associated prime. Then we have an inclusion $A/P \subset M$ and as said in the previous part, we get $(A/P)_P \subset M_P$. But, $(A/P)_P$ is just the fraction field of A/P and in particular not zero. So, $M_P \neq 0$.

(b) If $N \subset M$ is a submodule, show that $\text{Supp } M = \text{Supp } N \cup \text{Supp } (M/N)$.

Just use that for any prime ideal P we have $N_P \subset M_P$ and $(M/N)_P = M_P/N_P$.

(c) Show that $P \in \text{Supp } M$ if and only if $\text{Ann } M \subset P$.
Assume \(P \in \text{Supp} \, M \) and \(P \) does not contain \(\text{Ann} \, M \).
Then we can pick \(a \in \text{Ann} \, M \), \(a \not\in P \). Thus, when we localize at \(P \), any element of \(M_P \) can be written as (the equivalence class of) \((am, a) = (0, a) = 0 \). So, \(M_P = 0 \).
Conversely, assume that \(P \) contains the annihilator. If \(M_P = 0 \), then any element \(m \in M \) becomes zero in \(M_P \) and thus there exists an \(a \not\in P \) such that \(am = 0 \). Since \(M \) is finitely generated, we can find a single such \(a \) such that it annihilates all these finite set of generators and thus all of \(M \). Again a contradiction.

(3) Let \(A, M \) be as above and let \(P \) be a maximal ideal and let \(r \) be the dimension of \(M/PM \) as an \(A/P \) vector space. Show that there exists an \(f \not\in P \) such that for all maximal ideals \(Q \) not containing \(f \), the dimension of \(M/QM \) as \(A/Q \) vector space is at most \(r \).

Since \(A \) is Noetherian and \(M \) is finitely generated, it is finitely presented and thus we can find an exact sequence \(F_1 \rightarrow F_0 \rightarrow M \rightarrow 0 \), where \(F_i \) s are free modules of finite rank. So, the map \(F_1 \rightarrow F_0 \) is given by a matrix \(\alpha \) over \(A \) of size \(m \times n \), \(m, n \) being the ranks of \(F_0, F_1 \). The fact that \(\dim_{A/Q} M/QM = s \) can then be seen to be equivalent to the rank of \(\alpha \) modulo \(Q \) is precisely \(m - s \), by using the exactness of \(F_1/QF_1 \rightarrow F_0/QF_0 \rightarrow M/QM \rightarrow 0 \). Thus at \(P \) rank of \(\alpha \) is \(m - r \). So, some \(m - r \times m - r \) minor is not in \(P \). So, let \(f \) be this minor. Then for any \(Q \) not containing this minor, clearly the rank of \(\alpha \) is at least \(m - r \) or equivalently, \(\dim_{A/Q} M/QM \leq r \).

(4) Let \(A = k[x_1, \ldots, x_r]/I \) where \(k \) is a field, the maximal ideal generated by the all the variables has some power contained in \(I \). Thus, \(A \) is an Artin local ring with the maximal \(P \) generated by the images of the variables, which by abuse of notation, we will still call \(x_i \). Let \(M \) be a finitely generated module over \(A \).
(a) If \(\dim_k M = d \), show that for any chain of submodules \(M_0 \subsetneq M_1 \subsetneq \cdots \subsetneq M_p \) of \(M \), \(p \leq d \) and there is such a chain with \(p = d \). Further show that for such a chain with \(p = d \), \(M_i/M_{i-1} \cong k = A/P \) for \(i > 0 \). As we defined in class, \(d \) is called the length of \(M \) and denoted by \(\ell(M) \).
Proof is by induction on \(d \). If \(d = 0 \), \(M = 0 \). Let us look at the case of \(d = 1 \). Then \(M \) is generated by a single element and so \(M = A/J \). Since \(J \neq A \), \(J \subset P \) and so \(A/J \) maps onto \(A/P = k \). Since \(\dim_k A/J = \dim_k A/P = 1 \), we see that \(J = P \) and then the argument is trivial.
Assume result proved for $d - 1$. For $d > 0$, $M/PM \neq 0$ by Nakayama’s lemma and then M/PM maps onto $A/P = k$, by vector space arguments. Thus we have a surjection $M \to k$ and let N be its kernel. Then $\dim_k N = d - 1$ and an easy induction finishes the proof.

(b) If $N \subset M$, show that $\ell(M) = \ell(N) + \ell(M/N)$.
This is just the corresponding statement for vector spaces.

(c) Let $\omega_A = \text{Hom}_k(A,k)$, the dualizing module. Show that the map $T : \text{Hom}_A(M,\omega_A) \to \text{Hom}_k(M,k)$ defined as, $T(f)(m) = f(m)(1)$ is an A-module isomorphism.

It is clear that T is a k-linear map. Let $a \in A$ and we will show that $T(af) = aT(f)$. $T(af)(m) = (af)(m)(1) = f(m)(a)$. $aT(f)(m) = a(f(m)(1)) = f(m)(a)$. Next we check that the map is injective. If $T(f) = 0$, then for any $m \in M$, we have $T(f)(m) = 0$ which means $f(m)(1) = 0$. But, then $f(m)(a) = f(am)(1) = 0$ and thus $f(m) = 0$ for all m, which means $f = 0$. The inverse to T is defined as $U : \text{Hom}_k(M,k) \to \text{Hom}_A(M,\omega_A)$ by $U(g)(m)(a)$ to be (where $m \in M, a \in A$) $g(am)$. I will leave you to check that this is an inverse.

(d) Show that $\ell(\text{Hom}_A(M,\omega_A)) = \ell(M)$. Deduce that the natural map $M \to \text{Hom}_A(\text{Hom}_A(M,\omega_A),\omega_A)$ is an isomorphism.
Trivial from the above.