(1) We say a commutative ring A is graded, if it can be written as $A = A_0 \oplus A_1 \oplus A_2 \oplus \cdots$, where A_0 is a ring, A_is are A_0 modules and the addition in A is the obvious one and $A_i A_j \subset A_{i+j}$ for all i, j.

(a) Show that $A = k[x_1, \ldots, x_n]$, polynomial ring in n variables over a field k is a graded ring where A_d is the k vector space of all homogeneous polynomials of degree d. This is obvious, since the product of a homogeneous polynomial of degree d and another of degree e has the product homogeneous of degree $d+e$.

(b) Let A be a graded ring and let $D : A \to A$ be the map defined as $D((a_0, a_1, a_2, \ldots, a_n, \ldots)) = (0, a_1, a_2, \ldots, na_n, \ldots)$ is a derivation. It is easy to show that $D(f + g) = D(f) + D(g)$. Thus using distributivity, it suffice to show Leibniz’ rule for $f \in A_i, g \in A_j$. Then $fg \in A_{i+j}$ and so $D(fg) = (i+j)fg$. On the other hand $fD(g) + gD(f) = f \cdot jg + g \cdot if = (i+j)fg$.

(2) A few problems on derivations in positive characteristic $p > 0$.

All rings and fields will be of characteristic p.

(a) Let $K \subset K(x) = L_1$ with $x \notin K$ and $x^p \in K$, be a field extension. Show that $D = \text{Der}_K(L_1)$ is a one dimensional L_1-vector space generated by $D = \frac{d}{dx}$. Calculate $(xD)^p$.

First, we show that $D \in D$. Any element in L_1 can be uniquely written as $f = a_0 + a_1 x + \cdots + a_{p-1} x^{p-1}$ with $a_i \in K$ and so we get K-linear map $D(f) = a_1 + 2a_2 x + \cdots + (p-1)a_{p-1} x^{p-2}$. To check that it is a derivation, suffices to show that $D(x^n) = nx^{n-1}$ and this is obvious. Let $T \in D$ and let $f = T(x)$. Then $S = T - fD \in D$ and $S(x) = 0$. So, we get $S(x^n) = 0$ for any n and the rest is clear.

Easy to check that $(xD)^p = xD$.

(b) Prove a similar result for $L_n = K(x_1, \ldots, x_n)$, where $x_i^p \in K$, by first showing that we may choose n such that $p^n = [L_n : K]$. Again, calculate E^p, where E is the Euler derivation, $E = \sum x_i \frac{d}{dx_i}$. This is very similar to the previous problem.

(3) A few problems on modules and functors which often appear.

Let A be a commutative ring and let C be the category of A-modules.
(a) Let \(X \in \mathcal{C} \) and define a map \(F : \mathcal{C} \to \mathcal{C} \) by \(M \mapsto \text{Hom}_A(X, M) \). Show that this defines a functor.

Notice that \(\text{Hom}_A(X, M) \) is an \(A \)-module and so \(F \) defines a map from the objects of \(\mathcal{C} \) to itself. Next, given a homomorphism of \(A \)-modules, \(f : M \to N \), we get a natural homomorphism \(F(M) \to F(N) \), by mapping \(\phi \in F(M) \) to \(f \circ \phi \in F(N) \). Rest is just checking.

(b) If \(0 \to M \to N \to P \) is an exact sequence in \(\mathcal{C} \), show that the sequence, \(0 \to F(M) \to F(N) \to F(P) \) is exact. Such functors are called left exact. Further show by an example that, even if we had surjectivity from \(N \to P \) above, \(F(N) \to F(P) \) may not be surjective.

The exactness is easy. I will write an example to show the last part. Let \(A = \mathbb{Z} \) and consider an exact sequence \(0 \to \mathbb{Z} \to \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0 \), where \(n \neq 0 \) is an integer. Let \(X = \mathbb{Z}/n\mathbb{Z} \). Then, \(\text{Hom}_\mathbb{Z}(X, \mathbb{Z}) = 0 \), while \(\text{Hom}_\mathbb{Z}(X, \mathbb{Z}/n\mathbb{Z}) \neq 0 \).

(c) Similarly, consider the map \(G : \mathcal{C} \to \mathcal{C} \) given by \(M \mapsto \text{Hom}_A(M, X) \). Show that this too is a functor (to be precise, to the opposed category, since it will reverse arrows).

As before, show that if we have an exact sequence \(M \to N \to P \to 0 \), we get an exact sequence \(0 \to G(P) \to G(N) \to G(M) \).

Less said the better.