• Consider a vector field \(\vec{F}(x, y) = P(x, y)\hat{i} + Q(x, y)\hat{j} \) on a region (connected open set) \(D \) in \(\mathbb{R}^2 \). If \(\vec{F} = \nabla f \) — that is, if \(\vec{F} \) is conservative — then \(\int_C \vec{F} \cdot d\vec{r} \) only depends on the endpoints \(A \) and \(B \) of \(C \) (independence of path). In particular, if \(C \) is closed (\(A = B \)), then \(\int_C \vec{F} \cdot d\vec{r} = 0 \).

• Moreover, if \(\vec{F} \) is conservative, then \(P = f_x, Q = f_y \), and so by Clairaut’s theorem, \(P_y = f_{xy} \) and \(Q_x = f_{yx} \).

• To state a converse to this last result, suppose \(D \) is simply connected: this means that it has no holes. Then \(P_y = Q_x \) implies that \(\vec{F} \) is conservative. We will check this if \(D \) is a rectangle.

• If \(D \) has a hole, then it is possible to have \(P_y = Q_x \) and \(\vec{F} \) still fail to be conservative.

• For instance, \(\vec{F} = -\frac{y}{x^2+y^2}\hat{i} + \frac{x}{x^2+y^2}\hat{j} \) satisfies \(P_y = \frac{x^2-y^2}{(x^2+y^2)^2} = Q_x \), but if \(C \) is the (closed) circle of radius 1, then \(\int_C \vec{F} \cdot d\vec{r} = 2\pi \neq 0 \), so \(\vec{F} \) can’t be conservative. The problem is that the domain of definition of \(\vec{F} \) omits the origin, hence has a hole. We are saying there can’t be a function \(f \) on \(D = \mathbb{R}^2 - \{0\} \) such that \(\vec{F} = \nabla f \) on all of \(D \). If we take a smaller region \(D' \) inside \(D \) which doesn’t have a hole, like a disk of radius 1 about \((2, 0) \), then the restriction of \(\vec{F} \) to \(D' \) is indeed conservative (and obviously \(D' \) doesn’t contain \(C \), so there is no contradiction).

• For a vector field \(\vec{F} \) on any region \(D \), \(\vec{F} \) is conservative if and only if \(\int_C \vec{F} \cdot d\vec{r} \) is independent of path (or equivalently, zero on all closed loops).

• We will discuss in lecture how to actually find \(f \) in the event that \(\vec{F} \) is conservative.