Problem set 10

1. Let \(R = \{ x + iy \mid -1 \leq x \leq 1 - \epsilon, 0 \leq y \leq 1 \} \subset \mathbb{C} \) with \(\epsilon > 0 \) small. Compute \(\int_{\partial R} \frac{dz}{z^5 - 1} \).

2. Given \(f \in Hol(\bar{\mathbb{H}}) \) (closure of upper half-plane), assume there exist \(B, c \in \mathbb{R}_+ \) such that \(|f(z)| \leq \frac{B}{|z|^c} \) (for \(z \in \mathbb{H} \)). Prove that for any \(z \in \mathbb{H} \), \(f(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(t)}{t-z} \, dt \). [Hint: draw a big semicircle in \(\mathbb{H} \).]

3. Determine the poles and residues of \(f(z) = \frac{1}{\sin(z)} \). Find \(\int_{\partial D} \frac{dz}{\sin(z)} \).

4. Let \(P_n(z) = \sum_{k=0}^{n} \frac{z^k}{k!} \). Given \(R \), prove that \(P_n \) has no zeroes in the disk of radius \(R \) for all \(n \) sufficiently large.

5. How many zeroes does \(f(z) = z^{87} + 36z^{57} + 71z^4 + z^3 - z + 1 \) have in the annulus \(1 < |z| < 2 \)?

6. How many roots of the equation \(z^4 + 8z^3 + 3z^2 + 8z + 3 = 0 \) lie in the right half-plane? [Hint: sketch the image of the imaginary axis and apply the argument principle to a large half-disk.]

7. (a) Suppose \(f \) is a holomorphic function on the unit disk \(D_1 \) which is represented by a power series \(\sum_{n=0}^{\infty} a_n z^n \) there. Also assume that, as a map from \(D_1 \) to \(f(D_1) \), it is injective (hence an analytic isomorphism). Prove that the area of \(f(D_1) \) is given by \(\pi \sum_{n=0}^{\infty} n |a_n|^2 \).

(b) Assume further that \(f \in Hol(D_1) \) (i.e. \(f \) extends to a holomorphic function on some open set containing \(D_1 \)), that \(f(0) = 0 \), and that \(|f(z)| \geq 1 \) if \(|z| = 1 \). Prove that \(\text{area}(f(D_1)) \geq \pi \).