1. \(f(z) := \arctan(z) = \sum_{n \geq 1} a_n z^n \), where \(a_n = 0 \) for \(n \) even and \(a_n = \frac{1}{n} (-1)^{(n-1)/2} \). Let
\(g(z) := \sum_{k \geq 1} b_k z^k \) be the composition inverse of \(f(z) \), i.e., \(f(g(z)) = z = g(f(z)) \).
Then
\[
z = \sum_{n \geq 1} a_n g(z)^n = \sum_{n \geq 1} a_n \left(\sum_{k \geq 1} b_k z^k \right)^n = \sum_{n \geq 1} c_n z^n,
\]
where
\[
c_n = \sum_{k \geq 1, |j| = n} b_k \prod_{i=1}^k a_{j_i} = \sum_{k \geq 1} \sum_{|j| = n} b_k \prod_{i=1}^k a_{j_i}
\]
and \(|j| = j_1 + j_2 + \ldots + j_n\). Thus,

1. \(1 = c_1 = b_1 a_1 = b_1 \)
2. \(0 = c_2 = b_1 a_2 + b_2 a_1^2 = 0 + b_2 = b_2 \)
3. \(0 = c_3 = b_1 a_3 + b_2 (2a_1 a_2) + b_3 a_1^3 = a_3 + 0 + b_3 = -\frac{1}{3} + b_3 \Rightarrow b_3 = \frac{1}{3} \)
4. \(0 = c_4 = b_1 a_4 + b_2 (2a_1 a_3 + a_2^2) + b_3 (3a_1^2 a_2) + b_4 a_1^4 = 0 + 0 + 0 + b_4 = b_4 \)
5. \(0 = c_5 = b_1 a_5 + b_2 (...) + b_3 (3a_1^2 a_3 + 3a_1 a_2^2) + b_4 (...) + b_5 a_1^5 = a_5 + 0 + b_3 (3a_3 + 0) + b_5 \)
\[
= \frac{1}{5} + \frac{-1}{3} + b_5 \Rightarrow b_5 = \frac{2}{15} \]
6. \(0 = c_6 = b_1 a_6 + b_2 (...) + b_3 \)
7. \(0 = c_7 = b_1 a_7 + b_2 (...) + b_3 (3a_1^2 a_5 + 6a_1 a_2 a_4 + 3a_1 a_3^2) + b_4 (...) + b_5 (5a_1^4 a_3 + 10a_1^2 a_2^2) + b_6 (...) + b_7 a_1^7 \)
\[
= a_7 + 0 + b_3 (3a_9 + 0 + 3a_5^2) + 0 + b_5 (5a_3 + 0) + 0 + b_7 \]
\[
= -\frac{1}{7} - \frac{1}{5} + \frac{1}{9} + \left(\frac{2}{15} \right) \left(\frac{-5}{3} \right) b_7 \Rightarrow b_7 = \frac{17}{315}.
\]

The coefficients of degree \(\leq 7 \) in the power series expansion of \(\tan(z) \) about \(z = 0 \), then, are \(0, 1, 0, \frac{1}{3}, 0, \frac{2}{15}, 0, \) and \(\frac{17}{315} \). \(\Box \)
Let L be the line (segment) $(-1,1)$ in the unit disk.

It's fairly clear that this is a geodesic with the Poincaré metric $g(z) = \frac{1}{1-|z|^2}$. We also know that the image of L under an isometry is also a geodesic, and that holomorphic automorphisms of D_1 are isometries.

So consider $\phi_{ia}(L)$, where $\phi_{ia}(z) = \frac{z - ia}{1 + ia\bar{z}}$, $a \in (-1,1)$.

For $x \in (-1,1)$ we get $\phi_{ia}(x) = \frac{x(1-a^2)}{1+a^2x^2} + i\frac{-a(1+ix^2)}{1+a^2x^2}$.

One checks that this is the portion of the circle with center at $\frac{i1+a^2}{2a}$ and radius $\frac{(1-a^2)}{2a}$ which lies in D_1. By the conformality of ϕ_{ia} and the fact that $L \subset \partial D_1$, at both endpoints, the circle is L to ∂D_1, at the 2 pts. where they meet.

Conversely, if C is any arc of a circle that lies in D_1 and is perpendicular to the unit circle at its endpoints, then C arises as the Möbius transformation of L. (After a rotation, we can assume that C is symmetric with the y-axis and lies in D_1. The endpts. of this arc will certainly have the form $\left(\frac{-1+a^2}{1+a^2}, \frac{-ia}{1+a^2}\right)$, and so we never $\phi_{ia}(L)$.) Hence C is a geodesic.

To compute the geodesic distance between $a \in L \subset D_1$, we need an isomorphism/geometry of (D_1, g) which sends $a \in L$ to points on L: $\phi(x) = e^{i\pi \frac{x-a}{1-x^2}}$ does the job, with $\phi(a) = 0$.

Now use $\int_{0}^{x_0} \frac{dx}{1-x^2} = \frac{1}{2} \log \left(\frac{1+x_0}{1-x_0} \right)$, done.
3. Let \(z_0 \in U \), where \(U \) is open, and let \(f \in \text{Hol}(U) \) with \(f'(z_0) \neq 0 \). Then \(f \) is analytic on \(U \), so \(f \) has a power series expansion \(f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n \) at \(z_0 \). Let \(g(z) = \sum_{n=0}^{\infty} a_{n+1} (z - z_0)^n \). Now suppose that there isn’t a small open disk \(D_\delta \) centered \(z_0 \) such that \(g(z) \neq 0 \) for all \(z \) in \(D_\delta \). Then for all \(n \geq 1 \), there exists a \(z_n \in D_{1/n} \) such that \(g(z_n) = 0 \). Since \(g \) is continuous and \(z_n \to z_0 \), \(g(z_n) \to g(z_0) \) as \(n \to \infty \). Thus, \(g(z_0) = g(z_0) - g(z_n) \to 0 \), so \(g(z_0) = 0 \), which implies \(a_1 = f'(z_0) = 0 \), a contradiction. Thus, there exists a small circle \(C \) centered at \(z_0 \) such that \(g(z) \neq 0 \) for \(z \) in the region \(\Omega \) bounded by \(C \). Since \(g \) is analytic and non-zero in \(\Omega \), \(1/g \) is analytic in \(\Omega \). By the Cauchy integral formula,

\[
\int_C \frac{dz}{f(z) - f(z_0)} = \int_C \frac{dz}{(z - z_0)g(z)} = \frac{2\pi i}{g(z_0)} = \frac{2\pi i}{f'(z_0)}.
\]

\(\square \)

Problem 4. \(\mathcal{H}(\mathbb{D}) \) is closed under uniform convergence on compact subsets, so a uniform limit of polynomials on the closed disk must be holomorphic on \(\mathbb{D} \). Clearly there exists continuous functions on \(\mathbb{D} \) which are not holomorphic anywhere, such as \(z \to \overline{z} \), which means the *Weierstrass Approximation Theorem* does not hold on \(\mathbb{D} \).

\(\square \)

\(\text{(5)} \)

If \(\sum \frac{a_n}{n^s} \) \(\overline{\mathbb{C}} \) for some \(s_0 \), i.e., \(\sum \frac{|a_n|}{n^{s_0}} \) converges when \(s_0' := \text{Re} (s_0) \), then \(M_n := \left| \frac{a_n}{n^{s_0}} \right| \geq \left| \frac{a_n}{n^{s}} \right| \) \(\forall s \in \overline{U}_{s_0} := \left\{ z \in \mathbb{C} \mid \text{Re}(z) \geq s_0' \right\} \). This gives uniform convergence to an analytic function on \(\overline{U}_{s_0} \) with (homogeneous) derivative \(-\sum \frac{a_n \log n}{n^s} \).

Now you can take the gerb of \(\overline{\mathcal{D}} \) satisfying (5), with two \(\overline{\mathcal{D}} \), and we get the same result on \(\overline{U} \cap \overline{U}_{\overline{\mathcal{D}}} = \overline{U}_{s_0} \).