Problem Set #11

1. Solution:
 Suppose $n = p_1 \cdots p_n$.

 If $T \in \text{Rad}(R)$, which means $\exists x \in T$ s.t. $Tx = 0$ in R.

 Then $k^x \in T \implies p_i^{x-\nu(p_i)} \in T \implies p_i^{\max(x, -\nu(p_i))} \in T$.

 Therefore, $\text{Rad}(R) = \bigcap p_i$.

2. Proof:
 Suppose I is a primary proper ideal. We know that I is included in a maximal ideal, which is of the form (x) for some x in R.

 Since (x) is proper, we know $1 \in I$, and $1 \in e \notin I$. We want to show $1 = (x)$.

 Let $D = c_1 \cdots c_n$ be the generatator of I, according to I being primary.

 By Cohen's theorem, R is Noetherian.

3. Proof:
 For $f \in \text{Rad}(c_1, c_2)$, we have $c_1 \cdot x \cdot y = c_2 \cdot c_1 \cdot (c_2 \cdot x) = x \cdot c_2 \cdot c_1 = y = c_1 \cdot y$.

 Thus, $\text{Rad}(c_1, c_2) = (c_1, c_2)$.

4. Solution:
 $I = (x, a, b)$ generates R.

5. Proof:
 (a) For $I \subseteq P$, let $P = \text{Rad}(P^a)$ be prime. $I \subseteq P^a$ is a partial order set.

 Consider $P_n \leq P_m$. Easy to see $a \cdot b$ is ideal and $I \subseteq P_n \leq P_m$.

 Suppose $x \in P_m$ and $x \notin P_n$. Then $x \in P_m$ and $x \in P_n$.

 By P_m prime, $x \cdot y \in P_m$ for $k \in j, r \in P_k$.

 For $k \cdot j$, since $r \cdot j \in P_m$, $r \cdot j \in P_n$ by P_m prime, $r \in P_n$.

 Thus, $r \in P_m$, which means P_m is prime.

 By Zorn's lemma, P has a maximal element.

 Thus, there is a minimal prime ideal of I.

 (b) Every proper ideal is contained in a maximal ideal and it is prime.

 By (a), it has at least one minimal prime ideal.

 (c) By $\text{Rad}(I) = \bigcap P$ and for each $I \subseteq P$, we have a minimal prime ideal of I.

 This means we can replace each P within all the minimal prime ideals of I included in P.

 Thus, $\text{Rad}(I) = \bigcap P$.

6. Proof. Suppose \(x \in \mathbb{N} \) and \(x \neq N \). By \(\mathbb{N} \) being prime, we have
\[
\exists n.s.t. \, r^n \cdot M \cap N = r^n \cdot \text{ann}(M/N), \quad r \in \text{Rad}(\text{ann}(M/N)) = P.
\]
Thus, we have either \(r \neq 1 \) or \(x = 0 \).
\(\square \)

7. Proof. (a) \(\forall \, x \in \text{ann}(x_0), \, r \in \mathbb{R}, \quad (r \cdot x_0) \cdot x_0 = x_0 = 0 \), \(r \in \text{ann}(x_0) \)

Thus, \(\mathbb{R} \) is a field.

(b) Let \(P \) be a maximal ideal of \(\text{ann}(x_0) \times \sigma(x_0) \)

and say \(P = \text{ann}(x_0) \).

Suppose \(r \in P \) and \(r \neq 0 \).

By \(r \cdot x_0 = 0 \), \(x_0 \in \text{ann}(x_0) \).

According to \(\text{ann}(x_0) \cap \text{ann}(x_0) = \text{ann}(x_0) \cap r \cdot \text{ann}(x_0) \), \(\text{ann}(x_0) = r \cdot \text{ann}(x_0) \).

Let \(r = \text{ann}(x_0) \).

Thus, \(P \) is prime.
\(\square \)

8. Proof. (a) \(\text{ann}(x_0) \) is a partially order set and convex to

\(R \) is a field, hence \(\forall \, x \in \text{ann}(x_0) \). \(r \in \mathbb{R}, \, x \cdot r \in \text{ann}(x_0) \)

must have \(x \in \text{ann}(x_0) \). \(r \in \mathbb{R} \).

By Zorn's lemma, \(\text{ann}(x_0) \) has a maximal element and

by 7(b), it is prime, \(\text{ann}(x_0) \) must be a prime.

Choose \(\tilde{P}_i \) be an associated prime of \(P \).

Let \(\tilde{P}_i = \text{ann}(x_i) \).

We have \(\text{ann}(x_i) = R/P_i \).

If \(M/P_i \neq 0 \),

Choose \(\tilde{P}_i \) be an associated prime for \(M/P_i \).

Let \(\tilde{P}_i = \text{ann}(x_i) \).

Choose \(x_i \) be a prime of \(x_i \) and \(\text{ann}(x_i) \).

\[
\tilde{P}_i = M/P_i + x_i, \quad M/P_i = P_i, \text{ann}(x_i), \text{ann}(x_i) \cap P_i = R/P_i, \text{ann}(x_i) \cap R/P_i = R/P_i.
\]

If \(M/P_i \) nontrivial, \(\text{ann}(x_i) \) is a field and by \(M \) being finite, \(\text{ann}(x_i) \).

Since \(\text{ann}(x_i) \cap P_i = R/P_i, \, \text{ann}(x_i) = R/P_i \), \(\text{ann}(x_i) = R/P_i \), which is a contradiction.

Thus, we must have some \(r \in \mathbb{R} \), \(M/P_i = r \).

\[
M/P_i = r \cdot x_i \cdot x_i \cdot x_i \cdot x_i = x_i/\tilde{P}_i.
\]
9. Proof: \(\Rightarrow \) \(\subseteq \). Let \(P \) be an associated prime of \(M \). \(P = \text{ann}(x) \).

\(\exists \langle x \rangle \in \mathbb{N} \) s.t. \(P^m x = 0 \). \(P^m \text{ annihilates } x \). By \(P \) prime, \(\Rightarrow P \).

\(\Rightarrow \) \(\subseteq \). \(P \times M \) is prime, so \(P = \text{Rad}(\text{ann}(x)) \).

Since \(P \) is prime and \(R \) Noetherian, \(P \) is finitely generated.

Let \(P = (a_1, \ldots, a_n) \).

Since \(P = \text{Rad}(\text{ann}(x)) \), we have \(\exists n \in \mathbb{N} \) s.t. \(a_1^{n} \cdots a_n^{n} x = 0 \).

Consider \(x \langle a_1^{n}, \ldots, a_n^{n} \rangle \cdot x \).

We have \(P = \text{ann}(x) \), which means \(P \) is an associated prime of \(M \). \(\Rightarrow P \).

\(\Rightarrow P \).

\(\subseteq \). \(\exists \langle x \rangle \in \mathbb{N} \) s.t. \(P^m x = 0 \). \(\square \).