1. Solve: \(\mathbb{Z} \)-modules are abelian groups, and simple \(\mathbb{Z} \)-modules are simple abelian groups, say \(\mathbb{Z}_p \) for primes.

By semisimple modules are the direct sum of simple modules, semisimple \(\mathbb{Z} \)-modules are of form \(\bigoplus_{i \in I} \mathbb{Z}/\mathbb{M}_i \) (\(I \) is an arbitrary index set).

2. Proof: In the case \(R = \text{M}_n(D) \), let \(F \) be the center of \(D \). We know that \(F \) is a field.

Need to show \(F \cdot \text{I}_n \) is the center of \(\text{M}_n(D) \).

\(\forall C \in F \cdot \text{I}_n, \quad A \in \text{M}_n(D), \quad \text{Suppose } C \cdot A = A \cdot C \Rightarrow C \in \mathbb{Z}(\text{M}_n(D)). \)

\(\forall B \in \mathbb{Z}(\text{M}_n(D)), \quad \text{Suppose } B \cdot \text{I}_n \). We have \(B(\sum_{i,j} a_{ij} \cdot \text{I}_n) = \sum_{i,j} a_{ij} \cdot B(\text{I}_n) \).

\(B(i,j) = (0, \ldots, 0, b_{ij}, 0, \ldots, 0) \), \(\text{for } (d, e) = (\ldots, 0) \).

This means \(b_{ij} \) for \(i \neq j \) \(b_{ij} \in \mathbb{Z}(D) \).

\(F \cdot (0, \ldots, 0, 1, \ldots, 0) \).

And by \(B(\sum_{i,j} a_{ij} \cdot \text{I}_n) = \sum_{i,j} a_{ij} \cdot B(\text{I}_n) \).

Thus \(B \in F \cdot \text{I}_n \).

In conclusion, \(\mathbb{Z}(\text{M}_n(D)) = F \cdot \text{I}_n \) is a field.

For \(R \) is a semisimple ring, by Artin–Wedderburn's theorem we have

\[R \cong \text{M}_{r_1}(D_1) \times \cdots \times \text{M}_{r_k}(D_k) \]

\[\mathbb{Z}(R) \cong \mathbb{Z}(\text{M}_{r_1}(D_1)) \times \cdots \times \mathbb{Z}(\text{M}_{r_k}(D_k)) \]

\[\cong \mathbb{Z}(D_1) \times \cdots \times \mathbb{Z}(D_k) \]

is a finite direct product of fields. \(\square \)

3. Proof: According to \(R \) is semisimple, by Artin–Wedderburn's theorem we have

\[R \cong \text{M}_{r_1}(D_1) \times \cdots \times \text{M}_{r_k}(D_k) \] and there are exactly \(r \) non-isomorphic simple modules over \(R \), called \(V_i \).

By \(M \) is a finitely generated \(R \)-module, we can write \(M \) as

\[M \cong \bigoplus_{i=1}^r V_i^{m_i} \]

Thus we have \(E = \text{End}_R(M) = \bigoplus_{i=1}^r \text{End}_F(V_i^{m_i}) \cong \bigoplus_{i=1}^r \text{M}_n(\text{End}_F(V_i)) \)

\[\cong \bigoplus_{i=1}^r \text{M}_n(\text{End}_F(V_i)) \]

That is, \(E \) is semisimple. \(\square \)

4. omitted
J. Proof.

Let \(n \) be a natural number such that \(n^2 = m^2 \cdot d \) and \(n^2 \geq 2n \).

We have a series

\[0 \subseteq R_1 = \mathbb{R} \subseteq \cdots \subseteq R_n \subseteq \mathbb{R} \]

and we can construct a C.L. with length \(2n \).

Suppose \(R = M_n(C) \), \(\text{det} A = d \). Then we have

\[n^2 = m^2 \cdot d \text{ and } n^2 \geq 2n \text{, or } d = 1 \text{ and } n^2 \geq 2n \text{.} \]

R \subseteq M_n(C) \). \(\Box \)

6. Proof. Suppose \(V \) is a simple \(k[H] \)-module.

Consider \(V \) as a \(k[C] \)-module and \(W \), \(V = W \oplus \overline{W} \) as \(k[H] \)-module.

Let \(f : V \rightarrow W \), \(f \in \text{Hom}_{k[C]}(V, W) \). \(f \circ (v) = id \).

Define \(\pi(v) = \frac{1}{|C:H|} \sum_{g \in (C:H)} g^{-1} f(g \cdot v) \). \((\pi(v) \) is well-defined. Since \(g \circ h \cdot v = g \cdot h^{-1} f(g^{-1} h \cdot v) = g \cdot f(h \cdot v) = g \cdot f(h \circ \overline{h}) \).

1. \(\pi \in \text{Hom}_{k[H]}(V, W) \).

Let \(x \in C \). \(\pi(x \cdot v) = \frac{1}{|C:H|} \sum_{g \in (C:H)} g^{-1} f(g \cdot x \cdot v) \)

\[= \frac{1}{|C:H|} \sum_{g \in (C:H)} g^{-1} f(x \cdot g \cdot v) \]

\[= x \cdot \pi(v) \).

2. \(\pi(w) = \frac{1}{|C:H|} \sum_{g \in (C:H)} g^{-1} f(g \cdot w) = \frac{1}{|C:H|} \cdot (C:H) \cdot w = w \)

Thus \(V = W \oplus \ker \pi \) which \(\pi \) is semi-simple. \(\Box \).