Homework 9

3.3.6 $F_Y(y) = P(Y \leq y) = 1 - P(Y > y)$

$= 1 - P(X_1 > y, X_2 > y, X_3 > y)$

$= 1 - \left(\int_{y}^{\infty} e^{-x} \, dx \right)^3$

$= 1 - e^{-3y}$, for $0 < y < \infty$

Then $f_Y(y) = F'_Y(y) = 3e^{-3y}$, $0 < y < \infty$

And this is the exponential distribution with parameter $\lambda = 3$.

(b) $F_Y(y) = P(Y \leq y) = P(X_1 \leq y, X_2 \leq y, X_3 \leq y)$

$= \left(\int_{0}^{y} e^{-x} \, dx \right)^3$

$= \left(1 - e^{-y} \right)^3$, for $0 < y < \infty$

$f_Y(y) = 3 e^{-y} \left(1 - e^{-y} \right)^2$, $0 < y < \infty$.

3.3.15 In general

$P(X=x)$: A more rigorous way to state the given conditions is

$X | M=m \sim \text{Poisson}(m)$ and $M \sim \text{Gamma}(\alpha=2, \beta=1)$.

Following the law of total probability,

$P(X=x) = \int_{0}^{\infty} P(X=x | M=m) f(m) \, dm$

$= \int_{0}^{\infty} \frac{m^x e^{-m}}{x!} \cdot \frac{1}{\Gamma(2)} \cdot m^{2-1} e^{-m/1} \, dm$

$= \frac{1}{\Gamma(2)} \cdot \frac{1}{1} \cdot \int_{0}^{\infty} \frac{m^x e^{-m}}{x!} \, dm$
\[= \int_0^\infty \frac{m^{x+1} e^{-2m}}{x!} \, dm \quad \text{(Note } \Gamma(x) = 1, \Gamma(1) = 1, x = 1, \text{)} \]

\[= \frac{\Gamma(x+2)}{x!} \left(\frac{1}{2} \right)^{x+2} \int_0^\infty \frac{1}{\Gamma(x+2)} \left(\frac{1}{2} \right)^{x+2} m^{(x+2)-1} e^{-m/2} \, dm \]

\[= \frac{(x+1)!}{x!} \frac{1}{2^{x+2}} \quad \text{(The above integrand is the pdf of gamma)} \]

\[= \frac{x+1}{2^{x+2}} \quad \text{(} \Gamma(x+2) = (x+1)! \text{ for integer } x \geq 0, 1, 2, \ldots \text{)} \]

Then \[P(X=0) = \frac{1}{4}, \quad P(X=1) = \frac{1}{4}, \quad P(X=2) = \frac{3}{16}. \]

\[\text{Note} \] that, since \(M \) is a continuous random variable, it is not straightforward to use the law of total probability and we used

an analogy. The rigorous justification requires higher level math beyond this class.

3.3.16 \(F_Y(y) = P(Y \leq y) = P(-2 \log X \leq y) \)

\[= P(X \geq e^{-2y}) \]

\[= \int_1^{\infty} 1 \cdot dx \]

\[= 1 - e^{-2y}, \quad \text{for } 0 < y < \infty \]

And the pdf is \(f_Y(y) = F'_Y(y) = 2e^{-2y}, \quad 0 < y < \infty \).

\[\text{Note this is exponential distribution with parameter } \lambda = 2. \]

Remark: This transformation how one may obtain random numbers from an exponential distribution based on random numbers from \(U(0,1) \).
3.3.24 (a)

\[M_Y(t) = E(e^{tX}) = E(e^{2tx_1 + 6tx_2}) \]
\[= E(e^{2tx_1}) \cdot E(e^{6tx_2}) \quad \text{(due to independence)} \]
\[= M_1(2t) \cdot M_2(6t) \]
\[= \frac{1}{(1 - 3\cdot 2t)^3} \cdot \frac{1}{(1 - 1.6t)^5} \]
\[= \frac{1}{(1 - 6t)^8}, \quad \text{for } t < \frac{1}{6}. \]

(b) The form of the MGF of \(Y \) suggests that
\[Y \sim \text{gamma}(\alpha = 8, \beta = 6). \]

3.3.27 (a) According to the setup in Example 3.3.7, Using Theorem 3.3.2, we have \(X_2 + \cdots + X_{k+1} \sim \text{gamma}(\sum_{i=2}^{k+1} \alpha_i, \beta = 1). \) And \(X_i \) is independent of \(X_2 + \cdots + X_{k+1} \), then using the constructive definition of a beta random variable based on two gamma random variables (details in pages 162-163), we know \(Y_i = \frac{X_i}{X_1 + (X_2 + \cdots + X_{k+1})} \sim \text{beta}(\alpha_i, \sum_{i=2}^{k+1} \alpha_i) \)

For \(r \leq k \),
\[Y_1 + \cdots + Y_r = \frac{X_1 + \cdots + X_r}{X_1 + \cdots + X_{k+1}} = \frac{X_1 + \cdots + X_r}{(X_1 + \cdots + X_r) + (X_{k+1} + \cdots + X_{k+1})} \]

from Thm 3.3.2

\[X_1 + \cdots + X_r \sim \text{gamma}(\sum_{i=1}^{r} \alpha_i, \beta = 1) \] and \(X_{k+1} + \cdots + X_{k+1} \sim \text{gamma}(\sum_{i=k+1}^{k+1} \alpha_i, \beta = 1) \)

And since the two parts are independent, we have
\[Y_1 + \cdots + Y_r \sim \text{beta}(\sum_{i=1}^{r} \alpha_i, \sum_{i=k+1}^{k+1} \alpha_i) \]
(c) Let
\[\tilde{X}_1 = (X_1 + X_2) \sim \text{gamma}(\alpha_1 + \alpha_2, \beta = 1) \]
\[\tilde{X}_2 = (X_3 + X_4) \sim \text{gamma}(\alpha_3 + \alpha_4, \beta = 1) \]
\[\tilde{X}_3 = X_5 \sim \text{gamma}(\alpha_5, \beta = 1) \]
\[\vdots \]
\[\tilde{X}_k = X_{k+2} \sim \text{gamma}(\alpha_{k+2}, \beta = 1) \]
\[\vdots \]
\[\tilde{X}_{k-1} = X_{k+1} \sim \text{gamma}(\alpha_{k+1}, \beta = 1) \]

Then
\[Y_1 + Y_2 = \frac{X_1 + X_2}{X_1 + \cdots + X_{k+1}} = \frac{\tilde{X}_1}{\tilde{X}_1 + \tilde{X}_2 + \cdots + \tilde{X}_{k-1}} \]
\[Y_3 + Y_4 = \frac{\tilde{X}_2}{\tilde{X}_1 + \tilde{X}_2 + \cdots + \tilde{X}_{k-1}} \]
\[\vdots \]
\[Y_{i+2} = \frac{\tilde{X}_i}{\tilde{X}_1 + \cdots + \tilde{X}_{k-1}} \]
\[\vdots \]
\[Y_k = \frac{\tilde{X}_{k-2}}{\tilde{X}_1 + \cdots + \tilde{X}_{k-1}} \]

Since all \(\tilde{X}_i \)'s are independent gamma random variables with the same value \(\beta = 1 \), from the result in Example 3.3.7, we know \((Y_1 + Y_2), (Y_3 + Y_4), \ldots, Y_k \) have a Dirichlet distribution with parameters \(\alpha_1 + \alpha_2, \alpha_3 + \alpha_4, \alpha_5, \ldots, \alpha_k, \alpha_{k+1} \).