Ma 233: Calculus III
Solutions to Midterm Examination 2

Profs. Krishtal, Ravindra, and Wickerhauser
18 questions on 18 pages

Monday, March 14th, 2005

1. Find parametric equations for the tangent line at the point $(1/2, -\sqrt{3}/2, -\pi/3)$ on the curve $\mathbf{r}(t) = (\cos t, \sin t, t)$

(a) $(1/2, -\sqrt{3}/2, -\pi/3) + t \left(1/2, \sqrt{3}/2, 1\right)$

(b) $(1/2, -\sqrt{3}/2, -\pi/3) + t \left(\sqrt{3}/2, 1/2, 1\right)$

(c) $(1/2, -\sqrt{3}/2, -\pi/3) + t \left(-1/2, \sqrt{3}/2, 1\right)$

(d) $(1/2, -\sqrt{3}/2, -\pi/3) + t \left(-\sqrt{3}/2, 1/2, 1\right)$

(e) $(1/2, \sqrt{3}/2, 1) + t \left(1/2, -\sqrt{3}/2, -\pi/3\right)$

(f) $(\sqrt{3}/2, 1/2, 1) + t \left(1/2, -\sqrt{3}/2, -\pi/3\right)$

(g) $(-1/2, \sqrt{3}/2, 1) + t \left(1/2, -\sqrt{3}/2, -\pi/3\right)$

(h) $(-\sqrt{3}/2, 1/2, 1) + t \left(1/2, -\sqrt{3}/2, -\pi/3\right)$

Solution: Differentiate to get $\mathbf{r}'(t) = (-\sin t, \cos t, 1)$. The tangent line at $t = -\pi/3$ has direction vector $\mathbf{r}'(-\pi/3) = (-\sin(-\pi/3), \cos(-\pi/3), 1) = (\sqrt{3}/2, 1/2, 1)$ and base point $\mathbf{r}(-\pi/3) = (1/2, -\sqrt{3}/2, -\pi/3)$, so it may be written as

$$(1/2, -\sqrt{3}/2, -\pi/3) + t \left(\sqrt{3}/2, 1/2, 1\right)$$
The parameteric equations of the tangent line are thus

\[
\begin{align*}
x(t) &= \frac{1}{2} + \frac{\sqrt{3}}{2} t \\
y(t) &= -\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} t \\
z(t) &= -\frac{\pi}{3} + t
\end{align*}
\]
2. If \(\mathbf{r}(t) = \cos(7t) \mathbf{i} + \sin(-5t) \mathbf{j} + 6t \mathbf{k} \), compute \(\int_0^{\pi/2} \mathbf{r}(t) \, dt \).

(a) \(\frac{1}{7} \mathbf{i} - \frac{1}{5} \mathbf{j} + \frac{3\pi^2}{4} \mathbf{k} \).

(b) \(\frac{1}{7} \mathbf{i} + \frac{1}{5} \mathbf{j} + \frac{3\pi^2}{4} \mathbf{k} \).

(c) \(\frac{1}{7} \mathbf{i} - \frac{1}{5} \mathbf{j} - \frac{3\pi^2}{4} \mathbf{k} \).

(d) \(-\frac{1}{7} \mathbf{i} - \frac{1}{5} \mathbf{j} + \frac{3\pi^2}{4} \mathbf{k} \). \(\Leftarrow \)

(e) \(\mathbf{i} - \mathbf{j} + 3\pi \mathbf{k} \).

(f) \(\mathbf{i} + \mathbf{j} + 3\pi \mathbf{k} \).

(g) \(\mathbf{i} - \mathbf{j} - 3\pi \mathbf{k} \).

(h) \(-\mathbf{i} - \mathbf{j} + 3\pi \mathbf{k} \).

Solution: Integrate the components separately to get the antiderivative

\[
\frac{1}{7} \sin(7t) \mathbf{i} + \frac{1}{5} \cos(-5t) \mathbf{j} + \frac{6t^2}{2} \mathbf{k}
\]

Evaluating the difference between 0 and \(\pi/2 \) gives

\[
-\frac{1}{7} \mathbf{i} - \frac{1}{5} \mathbf{j} + \frac{3\pi^2}{4} \mathbf{k}
\]

\(\square \)
3. Find the length of the curve

\[\{ \mathbf{r}(t) = \cos(5t)\mathbf{i} + \sin(5t)\mathbf{j} + 6t\mathbf{k} : -2 \leq t \leq 6 \} \]

(a) 8
(b) 48
(c) \(2\sqrt{61}\)
(d) \(4\sqrt{61}\)
(e) \(8\sqrt{61}\)
(f) \(2\sqrt{86}\)
(g) \(4\sqrt{86}\)
(h) \(8\sqrt{86}\)

Solution: Find \(\mathbf{r}'(t) = -5\sin(5t)\mathbf{i} + 5\cos(5t)\mathbf{j} + 6\mathbf{k} \) and

\[
\| \mathbf{r}'(t) \| = \sqrt{25\sin^2(5t) + 25\cos^2(5t) + 36} = \sqrt{61}.
\]

Integrate this to get the length

\[
\int_{-2}^{6} \| \mathbf{r}'(t) \| \, dt = 8\sqrt{61}.
\]
4. Given that a point has acceleration $a(t) = (1, 2t, -3t + 1)$, its position is $(1, 1, 1)$ at $t = 0$ and its velocity is $(-2, -2, -2)$ at $t = 0$, find its position at all times t.

(a) $r(t) = \left(\frac{1}{2} t^2 - t + 2, \frac{1}{3} t^3 - t + 2, -\frac{1}{2} t^3 + \frac{1}{2} t^2 - t + 2 \right)$

(b) $r(t) = \left(\frac{1}{2} t^2 + t + 2, \frac{1}{3} t^3 + t + 2, -\frac{1}{2} t^3 + \frac{1}{2} t^2 + t + 2 \right)$

(c) $r(t) = \left(\frac{1}{2} t^2 - t - 2, \frac{1}{3} t^3 + t - 2, -\frac{1}{2} t^3 + \frac{1}{2} t^2 + t - 2 \right)$

(d) $r(t) = \left(\frac{1}{2} t^2 - t - 2, \frac{1}{3} t^3 - t - 2, -\frac{1}{2} t^3 + \frac{1}{2} t^2 - t - 2 \right)$

(e) $r(t) = \left(\frac{1}{2} t^2 - 2t + 1, \frac{1}{3} t^3 - 2t + 1, -\frac{1}{2} t^3 + \frac{1}{2} t^2 - 2t + 1 \right) \Leftarrow$

(f) $r(t) = \left(\frac{1}{2} t^2 + 2t + 1, \frac{1}{3} t^3 + 2t + 1, -\frac{1}{2} t^3 + \frac{1}{2} t^2 + 2t + 1 \right)$

(g) $r(t) = \left(\frac{1}{2} t^2 + 2t - 1, \frac{1}{3} t^3 + 2t - 1, -\frac{1}{2} t^3 + \frac{1}{2} t^2 + 2t - 1 \right)$

(h) $r(t) = \left(\frac{1}{2} t^2 - 2t - 1, \frac{1}{3} t^3 - 2t - 1, -\frac{1}{2} t^3 + \frac{1}{2} t^2 - 2t - 1 \right)$

Solution: Velocity, the antiderivative of acceleration, is

$$v(t) = \left(t + c_x, \ t^2 + c_y, \ -\frac{3}{2} t^2 + t + c_z \right),$$

where c_x, c_y, c_z are constants of integration. Determine these from the condition $(−2, −2, −2) = v(0) = (c_x, c_y, c_z)$, so $c_x = −2, c_y = −2, c_z = −2$ and $v(t) = \left(t - 2, \ t^2 - 2, \ -\frac{3}{2} t^2 + t - 2 \right)$.

Position, the antiderivative of velocity, is

$$r(t) = \left(\frac{1}{2} t^2 - 2t + k_x, \ \frac{1}{3} t^3 - 2t + k_y, \ -\frac{1}{2} t^3 + \frac{1}{2} t^2 - 2t + k_z \right),$$

where k_x, k_y, k_z are constants of integration. Determine these from the condition $(1, 1, 1) = r(0) = (k_x, k_y, k_z)$, so $k_x = 1, k_y = 1, k_z = 1$ and

$$r(t) = \left(\frac{1}{2} t^2 - 2t + 1, \ \frac{1}{3} t^3 - 2t + 1, \ -\frac{1}{2} t^3 + \frac{1}{2} t^2 - 2t + 1 \right)$$

\square
5. Find the curvature of \(y = \cos(3x) \) at \(x = \pi/4 \)

(a) 3/2
(b) 2/3
(c) 11/13^{2/3}
(d) 11/13^{3/2}
(e) 13/11^{2/3}
(f) 13/18^{3/2}
(g) 18/11^{2/3}
(h) 18/11^{3/2} \Leftarrow
(i) 11/18^{3/2}
(j) 13/11^{3/2}

Solution: This is the special case of a curve being the graph of a function: \(y = f(x) = \cos(3x) \). Therefore, use the formula

\[
\kappa(x) = \frac{|f''(x)|}{(1 + [f'(x)]^2)^{3/2}}
\]

But \(f'(x) = -3\sin(3x) \) and \(f''(x) = -9\cos(3x) \), so the formula expands to

\[
\kappa(x) = \frac{|9\cos(3x)|}{(1 + 9\sin^2(3x))^{3/2}}
\]

Thus

\[
\kappa(\pi/4) = \frac{|-9/\sqrt{2}|}{(1 + 9/2)^{3/2}} = \frac{18}{11^{3/2}}
\]
6. Let \(\mathbf{r}(t) = (\cos t)\mathbf{i} + (\sin t)\mathbf{j} + 2t\mathbf{k} \). Find the unit binormal vector \(\mathbf{B}(t) \) for all \(t \).

(a) \((-\sin t)\mathbf{i} + (\cos t)\mathbf{j} + 2\mathbf{k}\)
(b) \((\sin t)\mathbf{i} + (-\cos t)\mathbf{j} + 2\mathbf{k}\)
(c) \(-\frac{\sin t}{\sqrt{5}}\mathbf{i} + \frac{\cos t}{\sqrt{5}}\mathbf{j} + \frac{2}{\sqrt{5}}\mathbf{k}\)
(d) \(\frac{\sin t}{\sqrt{5}}\mathbf{i} + \frac{\cos t}{\sqrt{5}}\mathbf{j} + \frac{2}{\sqrt{5}}\mathbf{k}\)
(e) \(-\frac{\cos t}{\sqrt{5}}\mathbf{i} + \frac{\sin t}{\sqrt{5}}\mathbf{j} + 0\mathbf{k}\)
(f) \(-\frac{\cos t}{\sqrt{5}}\mathbf{i} + \frac{\sin t}{\sqrt{5}}\mathbf{j} + 0\mathbf{k}\)
(g) \(-\cos(t)\mathbf{i} - \sin(t)\mathbf{j} + 0\mathbf{k}\)
(h) \(\cos(t)\mathbf{i} + \sin(t)\mathbf{j} + 0\mathbf{k}\)
(i) \(-\frac{2\sin t}{\sqrt{5}}\mathbf{i} + \frac{-2\cos t}{\sqrt{5}}\mathbf{j} + \frac{1}{\sqrt{5}}\mathbf{k}\)
(j) \(\frac{2\sin t}{\sqrt{5}}\mathbf{i} + \frac{-2\cos t}{\sqrt{5}}\mathbf{j} + \frac{1}{\sqrt{5}}\mathbf{k}\)

\[\iff\]

Solution: Tangent vector: \(\mathbf{r}'(t) = (-\sin t)\mathbf{i} + (\cos t)\mathbf{j} + 2\mathbf{k} \). Its length is the constant

\[\|\mathbf{r}'(t)\| = \sqrt{\sin^2 t + \cos^2 t + 4} = \sqrt{5} \text{ for all } t, \text{ so the unit tangent vector is} \]

\[\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{-\sin t}{\sqrt{5}}\mathbf{i} + \frac{\cos t}{\sqrt{5}}\mathbf{j} + \frac{2}{\sqrt{5}}\mathbf{k}. \]

Normal vector:

\[\mathbf{T}'(t) = \frac{-\cos t}{\sqrt{5}}\mathbf{i} + \frac{-\sin t}{\sqrt{5}}\mathbf{j} + 0\mathbf{k}, \]

and its length is

\[\|\mathbf{T}'(t)\| = \sqrt{(-\cos t)^2/5 + (\sin t)^2/5} = 1/\sqrt{5}. \]

Hence the unit normal vector is

\[\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} = -\cos(t)\mathbf{i} - \sin(t)\mathbf{j} + 0\mathbf{k}. \]

Binormal vector:

\[\mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t) = \frac{2\sin t}{\sqrt{5}}\mathbf{i} + \frac{-2\cos t}{\sqrt{5}}\mathbf{j} + \frac{1}{\sqrt{5}}\mathbf{k} \]

\[\square\]
7. Match the following surfaces with the verbal description of their level curves:

1. \[z = \sqrt{9-x^2-y^2} \]
2. \[z = y^2 - x^2 \]
3. \[z = \frac{1}{y} - 3 \]

X. a collection of parallel lines
Y. a collection of circles
Z. two lines and a collection of hyperbolas

(a) 1 is X; 2 is Y; 3 is Z.
(b) 1 is Y; 2 is Z; 3 is X. ⇐
(c) 1 is Z; 2 is X; 3 is Y.
(d) 1 is X; 2 is Z; 3 is Y.
(e) 1 is Z; 2 is Y; 3 is X.
(f) 1 is Y; 2 is X; 3 is Z.
(g) All of them are X.
(h) All of them are Y.
(i) All of them are Z.
(j) None of the above.

Solution: Equation 1 is a hemisphere, with circles (Y) as level sets. Equation 2 is a hyperbolic paraboloid, with lines and hyperbolas (Z) as level sets. Equation 3 is hyperbolic cylinder with parallel lines (X) as level sets. □
8. Find \(\lim_{(x,y) \to (0,0)} \frac{x^2 - 3xy + y^2}{(x - y)^2} \), if it exists.

(a) \(-4\)
(b) \(-3\)
(c) \(-2\)
(d) \(-1\)
(e) 0
(f) 1
(g) 2
(h) 3
(i) 4
(j) The limit does not exist. \(\Leftarrow\)

Solution: The limit does not exist. Along the line \(y = 0\) through \((0,0)\), the ratio is constantly 1, while along the line \(y = -x\) through \((0,0)\), the ratio is constantly \(\frac{5}{4}\). Since these do not agree at \((0,0)\), there can be no limit at \((0,0)\). \(\Box\)
9. Find the partial derivative \(f_{xxy} \) for the function \(f(x, y) = e^{xy^2} \).

(a) \(y^6 e^{xy^2} \)

(b) \(4y^3 e^{xy^2} \)

(c) \(4y^3 e^{xy^2} + 2y^5 e^{xy^2} \)

(d) \(4y^3 e^{xy^2} + 2xy^5 e^{xy^2} \)

(e) \(2ye^{xy^2} + 3xy^5 e^{xy^2} \)

(f) \(2ye^{xy^2} + 2xy^3 e^{xy^2} \)

(g) \(3xy^3 e^{xy^2} \)

(h) \(y^5 xe^{xy^2} \)

(i) The derivative exists, but is none of the above.

(j) The derivative does not exist.

Solution: \(f_x = y^2 e^{xy^2}; \ f_{xx} = y^4 e^{xy^2}; \ f_{xxy} = 4y^3 e^{xy^2} + 2xy^5 e^{xy^2}; \)
10. Determine whether each of the following functions is a solution to Laplace’s equation

\[u_{xx} + u_{yy} = 0. \]

(I) \(u(x, y) = x^2 + y^2 \)

(II) \(u(x, y) = x^2 - y^2 \)

(III) \(u(x, y) = \log \sqrt{x^2 + y^2} \)

(a) I only.

(b) II only.

(c) III only.

(d) IV only.

(e) I and II only.

(f) I and III only.

(g) II and III only. \(\Leftarrow \)

(h) All.

(i) None.

Solution:

For (I): \(u_x = 2x, \ u_{xx} = 2; \ u_y = 2y, \ u_{yy} = 2. \) Thus \(u_{xx} + u_{yy} = 4 \neq 0. \)

For (II): \(u_x = 2x, \ u_{xx} = 2; \ u_y = -2y, \ u_{yy} = -2. \) Thus \(u_{xx} + u_{yy} = 0. \)

For (III): \(u_x = x/(x^2 + y^2), \ u_{xx} = (y^2 - x^2)/(x^2 + y^2)^2; \ u_y = y/(x^2 + y^2), \ u_{yy} = (x^2 - y^2)/(x^2 + y^2)^2; \) Thus \(u_{xx} + u_{yy} = 0. \) \(\square \)
11. Find the equation of the tangent plane to the surface $z = x^2 - y^2$ at the point $(2, 1, 3)$.

(a) $2x - y - z = 0$
(b) $2x - y - z = 3$
(c) $4x - 2y - z = 0$
(d) $4x - 2y - z = 3\quad \Leftarrow$
(e) $4x - 2y - z = 6$
(f) $8x - 4y - 2z = 3$
(g) $x - 2y - \frac{1}{2}z = 3$
(h) $x - 2y + \frac{1}{2}z = 3$
(i) $x - 2y - \frac{1}{2}z = 6$
(j) $x - 2y + \frac{1}{2}z = 6$

Solution: This surface is a level surface for the function $F(x, y, z) = x^2 - y^2 - z = 0$, so its tangent plane at $(2, 1, 3)$ has $\nabla F(2, 1, 3) = \langle 2x, -2y, -1 \rangle \big|_{(2,1,3)} = \langle 4, -2, -1 \rangle$ as a normal vector. Since $(2, 1, 3)$ is in the tangent plane, its equation is $4x - 2y - z = (4, -2, -1) \cdot \langle 2, 1, 3 \rangle = 3$. \[\square\]
12. Use differentials to estimate the amount of metal in a closed cylindrical can that is 10 cm high and 4 cm in diameter if the metal in the top and bottom is 0.1 cm thick and the metal in the sides is 0.05 cm thick.

(a) 8.0 cm3
(b) 8.1 cm3
(c) 8.2 cm3
(d) 8.3 cm3
(e) 8.4 cm3
(f) 8.5 cm3
(g) 8.6 cm3
(h) 8.7 cm3
(i) 8.8 cm3 ←
(j) 8.9 cm3

Solution: Let $h = 10$ cm denote the height of the can, and $d = 4$ cm denote its diameter. The area of the top and bottom together is $2 \times \pi (d/2)^2 = 8 \pi \approx 25$, while the area of the side is $h \times \pi d = 40 \pi \approx 126$, so the total metal in the can is approximately $(0.10)(25) + (0.05)(126) = 8.8$
13. Let \(z = f(x - y) \) for a differentiable function \(f \). Then \(\partial z/\partial x + \partial z/\partial y \) is

(a) 1
(b) 2
(c) \(\sqrt{5}/2 \)
(d) \(\pi \)
(e) \(\infty \)
(f) 0 \(\Leftarrow \)
(g) \(-1 \)
(h) \(-2 \)

Solution: By the chain rule, \(\partial z/\partial x = f'(x - y) \) while \(\partial z/\partial y = (-1)f'(x - y) \). Therefore, \(\partial z/\partial x + \partial z/\partial y = 0 \). □
14. Find the directional derivative of \(g(x, y, z) = 3e^x \cos(yz) \) at the point \(P(0, 0, 0) \) in the direction \(\langle \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \rangle \).

(a) 2 \quad \leftrightarrow \quad \mathbf{b}
(b) 1
(c) -3
(d) 5
(e) 0
(f) -4
(g) \infty
(h) 3.43

Solution: Compute the gradient at \(P(0, 0, 0) \):

\[
\nabla g(0, 0, 0) = (3e^x \cos(yz), -3ze^x \sin(yz), -3ye^x \sin(yz)) \bigg|_{(0,0,0)} = \langle 3, 0, 0 \rangle .
\]

Evaluate the dot product to get the directional derivative in the direction \(\mathbf{u} = \langle \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \rangle \):

\[
D_{\mathbf{u}} g(0, 0, 0) = \nabla g(0, 0, 0) \cdot \mathbf{u} = \langle 3, 0, 0 \rangle \cdot \langle \frac{2}{3}, \frac{1}{3}, -\frac{2}{3} \rangle = 2.
\]

\[\square\]
15. Consider the surface $7x^2 - 3y^2 + z^2 = 8$. Find an equation for the plane tangent to this surface at its point $P(1, 1, 2)$.

(a) $7x - 3y + 2z = 8$ ⇐

(b) $7x - 3y + z = 8$

(c) $-3y + 8z = 10$

(d) $-3y + 5z = 16$

(e) $-3y + 4z = 20$

(f) $2x - z = 2$

(g) $x = y$

(h) $z = 0$

(i) None of the above

Solution: The surface is a level set for the function $f(x, y, z) = 7x^2 - 3y^2 + z^2$. This function is a polynomial, hence it is differentiable and its gradient $\nabla f(1, 1, 2)$ is a normal vector for the tangent plane at $P(1, 1, 2)$. But

$$\nabla f(1, 1, 2) = \langle 14x, -6y, 2z \rangle|_{(1,1,2)} = \langle 14, -6, 4 \rangle,$$

so the equation of the tangent plane is

$$\langle 14, -6, 4 \rangle \cdot \langle x, y, z \rangle = \langle 14, -6, 4 \rangle \cdot \langle 1, 1, 2 \rangle$$

which simplifies to the equation $7x - 3y + 2z = 8$.

□
16. The volume of the largest rectangular box in the first octant with three faces in the coordinate planes and one vertex in the plane \(x + 2y + 3z = 6 \) is

(a) \(\frac{3}{4} \)
(b) \(5 \)
(c) \(\frac{7}{2} \)
(d) \(\frac{4}{3} \)
(e) \(\frac{\sqrt{34}}{83} \)
(f) \(\sqrt{34} \)
(g) \(\sqrt{84} \)
(h) None of the above

Solution: Let \(x, y, z \) be the coordinates of the vertex on the plane \(x + 2y + 3z = 6 \). The dimensions of the box will then be \(x, y, z \) and its volume will be

\[xyz = (6 - 2y - 3z)yz = f(y, z) = 6yz - 2y^2z - 3yz^2 \]

To maximize this function over all \(y, z \) that occur in the first octant, first find the critical points:

\[\nabla f(y, z) = \langle 6z - 4yz - 3z^2, 6y - 2y^2 - 6yz \rangle = \langle 0, 0 \rangle \]

\[\iff 6z - 4yz - 3z^2 = 0 \text{ and } 6y - 2y^2 - 6yz = 0 \]

\[\iff z(6 - 4y - 3z) = 0 \text{ and } y(6 - 2y - 6z) = 0. \]

If either \(z = 0 \) or \(y = 0 \), then the volume of box will be 0, clearly the absolute minimum. This accounts for all points \(x, y, z \) on one of the coordinate planes, too; they are all absolute minima for the volume.
If both z and y are nonzero, then $\nabla f(y, z) = \langle 0, 0 \rangle$ only if $6 - 4y - 3z = 0$ and $6 - 2y - 6z = 0$. But this is a linear system of two equations in two unknowns:

\[
\begin{align*}
4y + 3z &= 6 \\
2y + 6z &= 6
\end{align*}
\]

Subtracting twice the second equation from the first and solving the result yields $z = 2/3$, so $y = 1$. This must be the unique absolute maximum, as it is a critical point and the positive value of $g(y, z)$ there exceeds the zero value at all the other critical points.

The corresponding third dimension of the box will be $x = 6 - 2y - 3z = 2$, so the box will have volume $(2)(1)(\frac{2}{3}) = \frac{4}{3}$. \qed
17. The points on the hyperboloid $x^2 - y^2 + 2z^2 = 1$ where the normal line is parallel to
the line that joins the points $(3, -1, 0)$ and $(5, 3, 6)$ are

(a) $(3, -1.0)$ and $(5, 3, 6)$

(b) $(\sqrt{35}, \sqrt{38}, \sqrt{2})$ and $(-\sqrt{35}, -\sqrt{38}, \sqrt{2})$

(c) $(2, 2, 2)$ and $(1, 1, 1)$

(d) $(\sqrt{6}, 3, -\sqrt{2})$ and $(\sqrt{6}, 3, \sqrt{2})$

(e) any two points.

(f) $(1, 0, 0)$ and $(0, 0, 1/\sqrt{2})$

(g) $(\sqrt{6}/3, -2\sqrt{6}/3, \sqrt{6}/2)$ and $(-\sqrt{6}/3, 2\sqrt{6}/3, -\sqrt{6}/2)$ \Leftarrow

(h) None of the above.

Solution: The normal line is given by the gradient of $f(x, y, z) = x^2 - y^2 + 2z^2$ for
which the hyperboloid is a level set. But

$$\nabla f(x, y, z) = (2x, -2y, 4z)$$

The line joining the points $(3, -1, 0)$ and $(5, 3, 6)$ has direction vector $\mathbf{u} = (3, -1, 0) - (5, 3, 6) = (2, 4, 6)$. The normal is parallel to this line if and only if $\nabla f(x, y, z) \times \mathbf{u} = 0$, or

$$\langle 2x, -2y, 4z \rangle \times \langle 2, 4, 6 \rangle = \langle 0, 0, 0 \rangle \quad \iff \quad \begin{cases} 8x + 4y = 0 \\ -12y - 16z = 0 \\ -12x + 8z = 0 \end{cases} \iff \begin{cases} 2x + y = 0 \\ 3y + 4z = 0 \\ 3x - 2z = 0 \end{cases}$$

Substituting $y = -2x$ from the first equation and $z = \frac{3}{2}x$ from the third equation into
the second equation yields $-6x + 6x = 0$, so the system is consistent and any points
on the parameterized line $\{x = t, y = -2t, z = \frac{3}{2}t\}$ will solve it. Substitute these
parametric formulas into the equation of the hyperboloid to find the desired point:

\[1 = f(t, -2t, \frac{3}{2}t) = (t)^2 - (-2t)^2 + 2\left(\frac{3}{2}t\right)^2 = \frac{3}{2}t^2, \]

so \(t = \pm\sqrt{\frac{2}{3}} \), giving the points \((x, y, z) = (\sqrt{\frac{2}{3}}, -2\sqrt{\frac{2}{3}}, \frac{3}{2}\sqrt{\frac{2}{3}}) = (\sqrt{6}/3, 2\sqrt{6}/3, \sqrt{6}/2)\)
and \((x, y, z) = (-\sqrt{6}/3, 2\sqrt{6}/3, -\sqrt{6}/2).\) \(\square\)
18. A flat circular plate has the shape of the region \(\{(x, y) : x^2 + y^2 \leq 1\} \). The plate is cooled so that the temperature at the point \((x, y)\) is

\[
T(x, y) = x^2 + 2y^2 - x
\]

The extreme temperatures on the surface are

(a) 3.17 and 2.16

(b) 2.25 and −0.25

(c) 4.33 and −4.33

(d) 5.15 and 0

(e) 0.91 and 0.19

(f) 1.67 and −3.20

(g) 3.33 and −4.04

(h) 0.1 and 0.1

Solution: Look for critical points: \(0 = \nabla T(x, y) = \langle 2x - 1, 4y \rangle \) implies \(x = \frac{1}{2}, y = 0 \). There, the temperature is \(T(\frac{1}{2}, 0) = -0.25 \).

Look on the boundary. Substituting the circle parameterization \(x = \cos t, y = \sin t \) for the boundary points gives \(f(t) = T(\cos t, \sin t) = \cos^2 t + 2 \sin^2 t - \cos t \). This function is extremal at its critical points \(0 = f'(t) = -2 \cos t \sin t + 4 \sin t \cos t + \sin t \), where

\[
\sin t(2 \cos t + 1) = 0 \quad \iff \quad y(2x + 1) = 0.
\]

This is true on the circle \(x^2 + y^2 = 1 \) if and only if either \(y = 0 \) and \(x = \pm 1 \), or \(x = -\frac{1}{2} \) so \(y = \pm \frac{\sqrt{3}}{2} \). The corresponding temperatures are:

\[
T(1, 0) = 0; \quad T(-1, 0) = 2; \quad T(-\frac{1}{2}, \frac{\sqrt{3}}{2})) = 2.25; \quad T(-\frac{1}{2}, -\frac{\sqrt{3}}{2})) = 2.25
\]

The extremal values from these five candidates are \(T = -0.25 \) and \(T = 2.25 \). \(\square \)