1. Prove that a metric space \(S \) is disconnected if and only if there is a subset \(A \subset S \) which is neither empty nor all of \(S \), but which is both open and closed in \(S \).

2. A set \(S \subset \mathbb{R}^n \) is called starlike if there is some base point \(x \in S \) such that for every point \(y \in S \), the line between \(x \) and \(y \) is contained in \(S \).
 (a) Prove that every convex subset of \(\mathbb{R}^n \) is starlike.
 (b) Prove that every starlike subset of \(\mathbb{R}^n \) is connected.

3. Prove that if \(f : \mathbb{R} \to \mathbb{R} \) is continuous and one-to-one on a compact interval \([a, b] \), then \(f \) must be strictly monotonic on \([a, b] \).

4. A function \(f : \mathbb{R} \to \mathbb{R} \) is said to satisfy a Lipschitz condition of order \(\alpha > 0 \) at a point \(c \) in its domain if
 \[
 \exists M > 0 \quad \exists r > 0 \quad \forall x \in B(c; r), x \neq c \quad |f(x) - f(c)| < M|x - c|^{\alpha}.
 \]
 (a) Prove that if \(f \) satisfies a Lipschitz condition of order \(\alpha > 0 \) at \(c \), then \(f \) is continuous at \(c \).
 (b) Prove that if \(f \) satisfies a Lipschitz condition of order \(\alpha > 1 \) at \(c \), then \(f \) is differentiable at \(c \).
 (c) Find a function \(f \) satisfying a Lipschitz condition of order \(\alpha = 1 \) at \(c \) but which is not differentiable at \(c \).

5. Suppose that \(f \) is defined on \((0, 1)\) and has a bounded derivative in \((0, 1)\) (i.e., there is a finite \(M > 0 \) such that \(|f'(x)| \leq M \) for all \(x \in (0, 1) \)). Put \(a_n = f(1/n) \) for \(n = 1, 2, 3, \ldots \). Prove that \(\lim_{n \to \infty} a_n \) exists. (Hint: use the Cauchy criterion.)

6. Let \(f \) be continuous on \([0, 1]\) with \(f(0) = 0 \) and \(f'(x) \) finite at each \(x \in (0, 1) \). Suppose \(f'(x) \) is an increasing function on \((0, 1)\). Prove that \(g(x) \defeq f(x)/x \) is an increasing function on \((0, 1)\).

7. Prove that if \(f \) has a finite third derivative \(f''' \) in \([a, b]\), and \(f(a) = f(b) = f'(a) = f'(b) = 0 \), then there must be some point \(c \in (a, b) \) for which \(f'''(c) = 0 \).

8. Suppose that the vector-valued function \(\mathbf{x} \) is differentiable at each point \(t \in (a, b) \), and that \(||\mathbf{x}|| \) is constant on \((a, b)\). Prove that \(\mathbf{x}(t) \cdot \mathbf{x}'(t) = 0 \) for all \(t \in (a, b) \).

9. Define a real-valued function \(f \) of two real variables as follows:
 \[
 f(x, y) = \frac{xy}{x^2 + y^2}, \quad (x, y) \neq 0; \quad f(0, 0) = 0.
 \]
 (a) Prove that the partial derivatives \(D_1 f(x, y) \) and \(D_2 f(x, y) \) exist for every \((x, y) \in \mathbb{R}^2\) and find explicit formulas for them.
 (b) Show that \(f \) is not continuous at \((0, 0)\).
10. Let S be an open set in \mathbb{C} and let S^* be the set of complex conjugates of points of S: $S^* \overset{\text{def}}{=} \{ \bar{z} : z \in S \}$. If f is defined on S, define g on S^* by the formula $g(z) = \overline{f(z)}$. Prove that if f is differentiable at $c \in \text{int} S$, then g is differentiable at \bar{c}.