1. Classify the following singularities as removable, poles, or essential. If the singularity is a pole, state its order.

(a) \(\frac{1}{e^{z^2} - 1} \) at \(z = 0 \)

(b) \(e^{1/z} \) at \(z = 0 \)

(c) \(\frac{z}{\sin z} \) at \(z = 0 \)

Solution:

(a) Pole of order 2, since \(e^{z^2} - 1 = z^2 + O(z^4) \) as \(z \to 0 \).

(b) Essential singularity, since \(e^{1/zn} = 1 \) for \(zn = 1/(2n + 1) \pi i \to 0 \) but \(e^{1/zn} = -1 \) for \(zn = 1/(2n + 1) \pi i \to 0 \) as \(n \to \infty \). Hence the function can have no limit as \(z \to 0 \).

(c) Removable singularity, since \(\lim_{z \to 0} \frac{z}{\sin z} = 1/\lim_{z \to 0} \frac{(\sin z)/z}{1} = 1 \).

2. Find the residues of the following functions at the indicated points.

(a) \(\frac{1}{e^{z^2} - 1} \) at \(z = 0 \)

(b) \(\frac{z^4}{(z - \frac{1}{6}z^3 - \sin z)} \) at \(z = 0 \)

(c) \(\frac{(z^2 + 1)/z^4 - 1}{1} \) at \(z = 1 \) and \(z = i \).

Solution:

(a) Since this is a simple pole, find the residue as follows:

\[
\lim_{z \to 0} \frac{(z - 0)}{e^{z^2} - 1} = \lim_{z \to 0} \frac{z}{z + O(z^2)} = \lim_{z \to 0} \frac{1}{1 + O(z)} = 1.
\]

(b) Note that \(z - \frac{1}{6}z^3 - \sin z = -\frac{1}{120}z^5 + O(z^7) \) at \(z = 0 \). Hence \(\frac{z^4}{(z - \frac{1}{6}z^3 - \sin z)} \) has a simple pole at \(z = 0 \). Find the residue as follows:

\[
\lim_{z \to 0} \frac{(z - 0)z^4}{z - \frac{1}{6}z^3 - \sin z} = \lim_{z \to 0} \frac{z^5}{z - 0 - \frac{1}{120}z^5 + O(z^7)} = \lim_{z \to 0} \frac{-120}{1 + O(z^2)} = -120.
\]

(c) Factor the numerator and denominator polynomials into

\[
\frac{(z - i)(z + i)}{(z - i)(z + i)(z - 1)(z + 1)} = 1
\]

Hence \(z = i \) (also \(z = -i \)) is a removable singularity, so the residue there is 0. However, \(z = 1 \) is a simple pole with residue \(\lim_{z \to 1} \frac{(z-1)}{(z-1)(z+1)} = \frac{1}{2} \).
3. Find the residue of the function \(f(z) = \frac{1}{\sinh^2 z} \) at \(z = 0 \).

Solution: Since \(\sinh z = O(z) \) as \(z \to 0 \), we see that \(z = 0 \) is a pole of order 2 for \(\frac{1}{\sinh^2 z} \). Find the residue as follows, setting \(n = 2 \) in the formula on page 73 of our text:

\[
\lim_{z \to z_0} \frac{1}{(n-1)!} \left(\frac{d}{dz} \right)^{(n-1)} \left[f(z)(z - z_0)^n \right] = \lim_{z \to z_0} \frac{d}{dz} \left[\frac{z^2}{\sinh^2 z} \right]
\]

\[
= \lim_{z \to z_0} \frac{2z \sinh z - 2z^2 \cosh z}{\sinh^3 z}
\]

\[
= 2 \lim_{z \to z_0} \left[\frac{z}{\sinh z} \right] \left[\frac{\sinh z - z \cosh z}{\sinh^2 z} \right]
\]

L'Hôpital's rule allows us to evaluate the factor limits:

\[
\lim_{z \to 0} \left[\frac{z}{\sinh z} \right] = \lim_{z \to 0} \left[\frac{1}{\cosh z} \right] = 1,
\]

and

\[
\lim_{z \to 0} \left[\frac{\sinh z - z \cosh z}{\sinh^2 z} \right] = \lim_{z \to 0} \left[\frac{z \sinh z}{2 \sinh z \cosh z} \right] = 0.
\]

Hence the residue is 0. \(\square \)