Math 4318 : Real Analysis II
Mid-Term Exam 2
28 March 2013

Name: ____________________

Definitions:

True/False:

Proofs:
1. ______________________

2. ______________________

3. ______________________

4. ______________________

5. ______________________

6. ______________________

Total:
Definitions and Statements of Theorems

1. (3 points) For a sequence of real numbers \(\{a_n\} \), state the definition for the series \(\sum a_n \) to converge.

Solution: Let \(s_n = \sum_{k=1}^{n} a_k \). Then the series \(\sum a_k \) converges if and only if the sequence of partial sums \(\{s_k\} \) converges.

2. (4 points) State the Alternating Series Theorem.

Solution: If \(\{a_k\} \) is a sequence of decreasing numbers converging to 0, then

\[
\sum (-1)^n a_n
\]

converges.
3. (3 points) For a sequence of functions \(\{f_n\} \) defined on an interval \([a, b]\), state the definition for the sequence \(f_n \) to converge uniformly to a function \(f \) on the interval \([a, b]\).

Solution: The sequence \(f_n \) converges uniformly to the function \(f \) if for any \(\epsilon > 0 \) there exists an integer \(N = N(\epsilon) \) such that for all \(x \in [a, b] \) and for all \(n \geq N \)

\[
|f_n(x) - f(x)| < \epsilon.
\]
True or False (1 point each)

1. If the series $\sum a_n$ converges, then $\lim_{n \to \infty} a_n = 0$.

 Solution: True

2. If $0 \leq a_n \leq b_n$ for all n and $\sum a_n$ diverges, then $\sum b_n$ diverges.

 Solution: True

3. If $0 \leq a_n \leq b_n$ for all n and $\sum a_n$ converges, then $\sum b_n$ converges.

 Solution: False

4. For $1 < p < \infty$ the series $\sum \frac{1}{n \log n}^p$ converges.

 Solution: True

5. The radius of convergence of a power series $f(x) = \sum_{k=0}^{\infty} a_k x^k$ is given by

 $$\left(\limsup_{n \to \infty} |a_n|^\frac{1}{n} \right)^{-1}.$$

 Solution: True

6. If $R > 0$ then $f(x) = \sum_{k=0}^{\infty} \frac{x^k}{R^k}$ has radius of convergence R.

 Solution: True

7. If $f(x) = \sum_{k=0}^{\infty} a_k x^k$ has radius of convergence R, then $f(x)$ belongs to $C^\infty(-R, R)$.

8. If $\sum a_n$ converges, then $\sum |a_n|$ converges too.

Solution: False

9. If $a_n \geq 0$ for all $n \in \mathbb{N}$, $\sum a_n$ converges and $p > 1$ then $\sum a_n^p$ converges.

Solution: True

10. If $\{a_n\}$ is a sequence of non-zero real numbers, then

$$\liminf_{n \to \infty} |a_n|^\frac{1}{n} \leq \liminf_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

Solution: False
Proofs

1. (5 points) Suppose that for sequence of real numbers $\{a_n\}$ and $\{b_n\}$ that

$$0 \leq b_{n+1} \leq a_n \leq b_n \quad \forall n \in \mathbb{N}.$$

Prove that the series $\sum a_n$ converges if and only if the series $\sum b_n$ converges.

Solution: Use the comparison test twice.
2. (10 points) Calculate

\[
\lim_{n \to \infty} \int_0^1 \frac{nx}{1 + n^2x} \, dx
\]

Solution: If we have

\[
\lim_{n \to \infty} \frac{nx}{1 + n^2x} = 0
\]

uniformly for \(x \in [0, 1] \), then

\[
\lim_{n \to \infty} \int_0^1 \frac{nx}{1 + n^2x} \, dx = \int_0^1 \lim_{n \to \infty} \frac{nx}{1 + n^2x} \, dx = 0.
\]

So, we are left showing that

\[
\lim_{n \to \infty} \frac{nx}{1 + n^2x} = 0
\]

uniformly for \(x \in [0, 1] \). Clearly when \(x = 0 \) we have that the limit is 0, so we can focus on \(x \neq 0 \). But, then we have

\[
\frac{nx}{1 + n^2x} \leq \frac{nx}{n^2x} = \frac{1}{n}.
\]

Thus, given \(\epsilon > 0 \), choosing \(N = N(\epsilon) \) sufficiently large, \(N > \frac{1}{\epsilon} \) works, we have that

\[
\frac{nx}{1 + n^2x} < \epsilon
\]

for all \(x \in [0, 1] \).

An alternate proof is as follows:

\[
\frac{nx}{1 + n^2x} = \frac{1}{n} \frac{n^2x}{1 + n^2x} = \frac{1}{n} \left(\frac{1 + n^2x}{1 + n^2x} - \frac{1}{1 + n^2x} \right) = \frac{1}{n} - \frac{1}{n^2} \frac{1}{1 + n^2x}.
\]

This is then a simple integration problem from calculus, and we have

\[
\int_0^1 \frac{nx}{1 + n^2x} \, dx = \frac{1}{n} - \frac{1}{n^3} \ln(1 + n^2).
\]

Then it is enough to show that each term on the right goes to 0 as \(n \) approaches infinity. For the first term this is trivial, and for the second term this is an application of L’Hopital’s Rule.
3. (10 points) Let the radius of convergence of $\sum a_n x^n$ and $\sum b_n x^n$ be R_1 and R_2 respectively. Suppose that there exists a $N_0 \in \mathbb{N}$ such that for all $k \geq N_0$ we have that $|a_k| \leq |b_k|$. Prove that $R_2 \leq R_1$.

Solution: Recall that the radius of convergence of a power series $\sum c_n x^n$ is given by

$$R^{-1} = \limsup_{n \to \infty} |c_n|^{\frac{1}{n}}.$$

Let $k \geq N_0$, then we have that

$$\sup \left\{|a_n|^{\frac{1}{n}} : n > k \right\} \leq \sup \left\{|b_n|^{\frac{1}{n}} : n > k \right\}$$

since

$$|a_n| \leq |b_n| \quad n > k \geq N_0.$$

Thus, we have that

$$R_1^{-1} = \limsup |a_n|^{\frac{1}{n}} \leq \limsup |b_n|^{\frac{1}{n}} = R_2^{-1}.$$

Rearrangement gives that

$$R_2 \leq R_1.$$
4. (15 points) Let \(a, b \in \mathbb{R} \) with \(a < b \), and let \(\{f_k\} \) be a uniformly convergent sequence of continuous real-valued functions on \([a, b]\). Prove that

\[
\int_a^b \left(\lim_{n \to \infty} f_n(x) \right) \, dx = \lim_{n \to \infty} \int_a^b f_n(x) \, dx.
\]

Solution: This is the Theorem on page 138 from your text.
5. (20 points) Let \(f : \{ x \in \mathbb{R} : x \geq 1 \} \to \mathbb{R} \) be a decreasing positive-valued function. Prove that

\[
\sum_{n=1}^{\infty} f(n)
\]

converges if and only if

\[
\lim_{n \to \infty} \int_{1}^{n} f(x) \, dx
\]

exists.

Solution: This is Problem 9 on page 161 from your text.
6. (20 points)

(a) Show that the series
\[\sum_{k=1}^{\infty} \frac{(-1)^k}{k + |x|} \]
converges for all \(x \in \mathbb{R} \).

(b) Recall that a function \(f(x) \) is Lipschitz if there exists a positive constant \(K \) so that
\[|f(x) - f(y)| \leq K |x - y| \quad \forall x, y \in \mathbb{R}. \]

Show that the function \(g(x) := \sum_{k=1}^{\infty} \frac{(-1)^k}{k + |x|} \) is Lipschitz.

Solution: Fix \(x \in \mathbb{R} \). Set \(a_k(x) := \frac{1}{k + |x|} \). Then we have that \(a_k(x) \geq 0 \) for all \(k \in \mathbb{N} \), and since
\[k + |x| \leq k + 1 + |x| \]
we have that \(a_{k+1}(x) \leq a_k(x) \). Also, note that \(\lim_k a_k(x) = 0 \) for all \(x \in \mathbb{R} \). Then by the Alternating Series Theorem, we have that
\[\sum_{k=1}^{\infty} \frac{(-1)^k}{k + |x|} \]
must converge. Since \(x \in \mathbb{R} \) was arbitrary, we have convergence for all \(x \).

Set \(g(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k + |x|} \). By part (a) we know this converges for all \(x \in \mathbb{R} \). Thus, we have
\[
g(x) - g(y) = \sum_{k=1}^{\infty} \frac{(-1)^k}{k + |x|} - \sum_{k=1}^{\infty} \frac{(-1)^k}{k + |y|} = \sum_{k=1}^{\infty} \frac{(-1)^k}{(k + |x|)(k + |y|)}
\]
Taking absolute values, and recalling that \(|x - |y|| \leq |x - y| \) and that \(k + |x| \geq k \) for all \(x \in \mathbb{R} \) we have
\[
|g(x) - g(y)| = ||y| - |x|| \sum_{k=1}^{\infty} \frac{(-1)^k}{(k + |x|)(k + |y|)} \\
\leq |x - y| \sum_{k=1}^{\infty} \frac{1}{(k + |x|)(k + |y|)} \\
\leq \left(\sum_{k=1}^{\infty} \frac{1}{k^2} \right) |x - y|.
\]
Set \(K = \sum_{k=1}^{\infty} \frac{1}{k^2} \), which is finite by the Integral test, and so we have
\[|g(x) - g(y)| \leq K |x - y| \]
and \(g \) is Lipschitz.