Math/Music HW4 Solutions

March 23, 2005

Problem 1: Interval expressions

Solution:
(a) Up 67 cents: $\sqrt[\sqrt{2}]{2^{67}}$, 1.039 (b) Down 1050 cents: $\sqrt[\sqrt[3]{2}]{2^{-1050}}$, .545
(c) Up a major sixth: $\sqrt[\sqrt{2}]{2^{3}}$, 1.682
(d) The interval from B_3 to G_1^+: $\sqrt[\sqrt[3]{2}]{2^{-9}}$, .210

Problem 2: Frequencies

Solution:
(a) C_4: $440(2^{\frac{9}{12}}) \approx 261.626$ (b) D_2^+: $440(2^{\frac{-30}{12}}) \approx 77.782$
(c) F_3: $440(2^{\frac{16}{12}}) \approx 174.614$ (d) E_3^+: $440(2^{\frac{-42}{12}}) \approx 38.891$
(a) A_4: $256(2^{\frac{9}{12}}) \approx 430.539$ (b) G_6^+: $256(2^{\frac{30}{12}}) \approx 1448.155$
(b) C_1: $256(2^{\frac{36}{12}}) = 32$ (b) F_2^+: $256(2^{\frac{-18}{12}}) \approx 90.510$

Problem 3: Frequencies

Solution:
(a) $(E_3, G_3^+, B_3) = 220(2^{\frac{(-5, -1, 2)}{12}}) \approx (164.814, 207.652, 246.942)$
(b) $(F_4^+, A_4, G_6^+) = 440(2^{\frac{(-3, 0, 4)}{12}}) \approx (369.994, 440, 554.365)$
(c) $(A_5, C_6, E_6, G_6) = 880(2^{\frac{(0, 3, 7, 10)}{12}}) \approx (880, 1046.502, 1318.510, 1567.982)$
(d) $(A_3^+, B_3, D_4, F_4) = 880(2^{\frac{(-1, 2, 5, 8)}{12}}) \approx (207.652, 246.942, 293.665, 349.228)$

Problem 4: Interval equivalence modulo octave

Solution: All but the last are equivalent modulo octave.
(a) $5\frac{1}{20} = \frac{1}{4} = 2^{-2}$ (b) $14\frac{2}{7} = 4 = 2^2$ (c) $2.3\frac{1}{9/2} = \frac{1}{4} = 2^{-2}$ (d) $1.04\frac{1}{7/3} = 8 = 2^3$ (e) $2\frac{2}{3/5} = \frac{2}{3} \neq 2^n$

Problem 5: Frets

Solution: For each n such that $1 \leq n \leq 12$, we have $r = 2^{\frac{n}{12}}$, $q = 1 - r^{-1} = 1 - 2^{\frac{n}{12}}$, and our fret placement $qL = 40(1 - 2^{\frac{n}{12}})$.

Problem 6: Period transformations

Solution: You can do this problem symbolically or in terms of graph transformations. Since most people did it (correctly) symbolically, I will do it mostly in terms of graph transformations. First of all, the shifts ($f(t) + c$ and $f(t - c)$), being translations, do not change the period or affect the tone. A vertical stretch ($c \cdot f(t)$) keeps the period the same but affects the amplitude by a factor of c. A horizontal stretch ($f(\frac{t}{c})$), however, does affect the period: stretching it out by c multiplies the period by c. This adjusts the pitch by a factor of c (lower if $c > 1$). We can also see this by plugging $t + cP$ to the function $f(\frac{t}{c})$. $f(\frac{t + cP}{c}) = f(\frac{t}{c} + \frac{cP}{c}) = f(\frac{t}{c} + P) = f(\frac{t}{c})$ since f is periodic with period P. Therefore $f(\frac{t}{c})$ is periodic with period cP.

Problem 7: Tone transformations

Solution: Using (6) above, we see that

(a) $\frac{1}{2}f(t)$ has the same pitch but half the amplitude.

(b) $f(2t)$ has a frequency half that of f, so its tone is an octave lower.

(c) $f(t) + c$ is a vertical shift, so it does not affect the tone.

(d) $f(t + c)$ is a horizontal shift, so it does not affect the tone.

Problem 8: For the given tone, find α in $\sin(\alpha t)$.

Solution: We want to use the equation $\frac{\alpha}{2\pi} = \text{frequency}$, so $\alpha = 2\pi\text{frequency}$.

(a) C_4 has frequency 261.626 Hz, so $\alpha = 1643.842$.

(b) A_2 has frequency 103.83 Hz, so $\alpha = 652.359$.

(c) $D_6^\#$ has frequency 1244.508 Hz, so $\alpha = 7819.474$.

For Problems (9) and (10), the bad news was that was laboring under a misapprehension when grading (I had A and B mixed up). The good news is that I didn’t take any points off for that mistake (because nobody had it the same way as I did, funny how that works), so you may just have a whole lot of extra red that means nothing. However, there were some intricacies to the \cos^{-1} and \sin^{-1} functions that not everybody caught. I will, of course, be willing to talk over anything.
Problem 9: Sine transformations

Solution:

(a) We’re given the amplitude \(d = 5 \) and the phase shift \(\beta = \frac{\pi}{4} \). From \(k = \alpha = 30\pi \) we can find the period \(\frac{2\pi}{30\pi} = \frac{1}{15} \) and then the frequency is 15. Following the notes, \(a = \cos(\beta) = \cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \) and \(b = \sin(\beta) = \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} \). \(A = ad = \frac{5\sqrt{2}}{2} \) and \(B = bd = \frac{5\sqrt{2}}{2} \), so our function, then, is
\[f(t) = \frac{5\sqrt{2}}{2} \sin(30\pi t) + \frac{5\sqrt{2}}{2} \cos(30\pi t). \]

(b) We’re given the amplitude \(d = \sqrt{2} \) and the phase shift \(\beta = \pi \). From \(k = \alpha = 800 \) we can find the period \(\frac{2\pi}{800} = \frac{\pi}{400} \) and then the frequency is \(\frac{1000}{\pi} \). Following the notes, \(a = \cos(\beta) = \cos(\pi) = -1 \) and \(b = \sin(\beta) = \sin(\pi) = 0 \). \(A = ad = -\sqrt{2} \) and \(B = bd = 0 \), so our function, then, is
\[g(t) = -\sqrt{2} \sin(800t). \]

(c) We’re given the amplitude \(|d| = \frac{5}{3} \) and the phase shift \(\beta = \sin^{-1} .7 \). From \(k = \alpha = 2000 \) we can find the period \(\frac{2\pi}{2000} = \frac{\pi}{1000} \) and then the frequency is \(\frac{1000}{\pi} \). Following the notes, \(a = \cos(\beta) = \cos(\sin^{-1} .7) \approx .714 \) and \(b = \sin(\beta) = \sin(\sin^{-1} .7) = .7 \). \(A = ad \approx -1.19 \) and \(B = bd \approx -1.17 \), so our function, then, is
\[h(t) \approx -1.19 \cos(2000t) - 1.17 \sin(2000t). \]

Problem 10: Sine transformations

Solution:

(a) Here we’re given \(A = 4, B = 5, \) and \(k = \alpha = 300 \). We can find the period \(\frac{2\pi}{300} = \frac{\pi}{150} \) and the frequency \(\frac{150}{\pi} \) as before, while the amplitude is \(d = \sqrt{A^2 + B^2} = \sqrt{16 + 25} = \sqrt{41} \). \(\beta \), the phase shift, is the angle between the positive \(x \)-axis and the line connecting the point \((A, B) \) to the origin, and since \((A, B) \) is in the first quadrant we can find it by taking \(\cos^{-1} \frac{A}{d} = \cos^{-1} \frac{4}{\sqrt{41}} \approx .896 \). Our function, then, is
\[f(t) \approx \sqrt{41} \sin(300t + .896). \]

(b) Here we’re given \(A = 2, B = -2 \), and \(k = \alpha = 450\pi \). We can find the period \(\frac{2\pi}{450\pi} = \frac{\pi}{225} \) and the frequency 225 as before, while the amplitude is \(d = \sqrt{A^2 + B^2} = \sqrt{4 + 4} = 2\sqrt{2} \). \(\beta \), the phase shift, is the angle between the positive \(x \)-axis and the line connecting the point \((A, B) \) to the origin, and since \((A, B) \) is in the fourth quadrant we can find it by taking \(\sin^{-1} \frac{B}{d} = \sin^{-1} \frac{-2}{2\sqrt{2}} = -\frac{\pi}{4} \). Our function, then, is
\[g(t) = 2\sqrt{2} \sin(450\pi t - \frac{\pi}{4}). \]

(c) Here we’re given \(A = -1, B = 3 \), and \(k = \alpha = 1500\pi \). We can find the period \(\frac{2\pi}{1500\pi} = \frac{\pi}{750} \) and the frequency 750 as before, while the amplitude is \(d = \sqrt{A^2 + B^2} = \sqrt{1 + 9} = \sqrt{10} \). \(\beta \), the phase shift, is the angle between the positive \(x \)-axis and the line connecting the point \((A, B) \) to the origin, and since \((A, B) \) is in the second quadrant we can find it by taking \(\cos^{-1} \frac{A}{d} = \cos^{-1} \frac{-1}{\sqrt{10}} \approx 1.893 \). Our function, then, is
\[h(t) \approx \sqrt{10} \sin(1500\pi t + 1.893). \]