Homework 3
Math 109 / Music 109A, Spring 2015

Due Monday, February 23.

1. Express each of these intervals as elements of \mathbb{R}^+ three ways: (1) as a power of 2, (2) as a radical or the reciprocal of a radical, and (3) by a decimal approximation with digits to the right of the decimal.

(a) up 47 cents
(b) down 325 cents
(c) up a minor sixth
(d) the interval from G_3 to $A_1^\#$

2. Assuming A_4 is tuned to 440 Hz, find the frequencies for:

(a) C_4 (b) E_2^\flat (c) B_5 (d) $A_3^\#$

Suppose middle C is tuned as 256 Hz. (Note: This is not standard practice.) Find the frequencies for:

(a) A_4 (b) F_5^\flat (c) C_1 (d) $G_2^\#$

3. For each of these chords, voiced within an octave with the root on the bottom, give the pitch of each note in the chord. Assume A_4 is tuned to 440 Hz.

(a) major triad with root G_3
(b) minor triad with root A_4^\flat
(c) minor seventh chord with root D_3
(d) diminished seventh with root B_5^\flat
4. Suppose a string on a banjo has length 50cm. Indicate positions of the
12 frets which will allow the string to play one octave of the ascending
chromatic scale.

5. Evaluate without a calculator by writing the argument of log as a power
of the base. Write down each step of the simplification, e.g., \(\log_3 3\sqrt{3} = \log_3 3^{3/2} = \frac{3}{2} \log_3 3 = \frac{3}{2} \):

(a) \(\log_{10}(0.0001) \)
(b) \(\log_3 243 \)
(c) \(\log_5 \sqrt[5]{25} \)
(d) \(\log_b (1/\sqrt[5]{b^7}) \)

Express as a single logarithm without coefficient, i.e., in the form \(\log_b c \)
(do not evaluate with a calculator):

(e) \(\log_3 11 + \log_3 17 \)
(f) \(\log_9 5 - 2 \log_9 2 \)

(g) \(\log_2 13 + \log_4 21 \)
(h) \(2 \log_c x^2 - \frac{1}{2} \log_{\sqrt{c}} x \)
6. Sketch the graphs of:

(a) \(f(x) = 2^x \) \hspace{1cm} (b) \(g(x) = \log_2 x \) \hspace{1cm} (c) \(r(x) = 5^x \) \hspace{1cm} (d) \(s(x) = \log_5 x \)

Determine which pairs of these functions are inverse to each other, and which pairs differ by a horizontal or vertical stretch/compression. In the latter case, identify the stretch factor, justifying your answer.

7. Using laws of exponents, prove this property of logarithms:

\[
\log_b \frac{x}{y} = \log_b x - \log_b y
\]
8. Convert to semitones the intervals given by the following ratios: (Round off to 2 digits to the right of the decimal.)

(a) 7 (b) 0.3 (c) \(\frac{5}{2} \) (d) \(\sqrt{4} \) (e) \(e \)

Convert to cents the intervals given by the following ratios, rounding off to the nearest whole cent:

(f) 0.8 (g) 1.2 (h) \(\frac{3}{5} \) (i) \(\frac{8}{3} \) (j) \(\pi \)

9. Give a plausible harmonization of this melody by providing, in the bass clef, one whole note chord for each measure. Label each chord by root scale tone and chord type (e.g., VIm\(^7\)).

10. Analyze the basic harmony in the first 16 measures of Maple Leaf Rag. Each measure will have at most two chords. Label the chords by root note class and chord type (e.g., G\(^7\)). (Note: In a few places the chords are incomplete.) The music can be downloaded as a pdf file from the website. It is listed under Handouts.