Homework 4
Math 109 / Music 109A, Spring 2005

Due Monday, March 21.

(1) Express each of these intervals as elements of \mathbb{R}^+ three ways: (1) as a radical or the reciprocal of a radical, (2) as a power of 2, and (3) by a decimal approximation with 3 decimal digits.

 (a) up 67 cents
 (b) down 1050 cents
 (c) up a major sixth
 (d) the interval from B_3 to G_1^4

(2) Assuming A_4 is tuned to 440 Hz, find the frequencies for:

 (a) C_4 (b) D_2^4 (c) F_3 (d) E_1^5

 Suppose middle C is tuned as 256 Hz. Find the frequencies for:

 (a) A_4 (b) G_6^6 (c) C_1 (d) F_2^5

(3) For each of these chords, voiced within an octave with the root on the bottom, give the pitch of each note in the chord. Assume A_4 is tuned to 440 Hz.

 (a) major triad with root E_3^4
 (b) minor triad with root F_4^4
 (c) minor seventh chord with root A_5^4
 (d) diminished seventh with root A_3^5

(4) Determine whether each pair of musical intervals, expressed as elements of \mathbb{R}^+, are equivalent modulo octave. Explain why or why not.

 (a) 5, 20 (b) 14, $\frac{7}{2}$ (c) 2.3, 9.2 (d) 1.04, 0.13 (e) π, $\frac{3\pi}{2}$

(5) Suppose a string on a banjo has length 40cm. Indicate positions of the 12 frets which will allow the string to play one octave of the ascending chromatic scale.

(6) Prove that if $y = f(t)$ has period P, then so does $y = f(t) + c$, $y = f(t - c)$, and $y = cf(t)$, for any $c \in \mathbb{R}$. Prove that $f(t/c)$ ($c \neq 0$) has period cP.
(7) Suppose the function \(y = f(t) \) is the periodic function of period \(P \) corresponding to a musical tone, and suppose the graph of \(y = f(t) \) is:

For each of the functions below, sketch its graph and explain how its associated tone compares that of \(f(t) \).

(a) \(y = \frac{1}{2} f(t) \)
(b) \(y = f(2t) \)
(c) \(y = \tilde{f}(t) + c \)
(d) \(y = f(t + c) \)

(8) Find the value \(\alpha \) for which the pitch associated to the periodic function \(y = \sin(\alpha t) \), where \(t \) is time in seconds, is:

(a) middle C
(b) \(A_5^2 \)
(c) \(D_4^6 \)

(9) Find the period, frequency, amplitude, and phase shift for these functions, and express each in the form \(A \sin(\alpha t) + B \cos(\alpha t) \):

(a) \(f(t) = 5 \sin(30\pi t + \frac{\pi}{4}) \)
(b) \(g(t) = \sqrt{2} \sin(800t + \pi) \)
(c) \(h(t) = -\frac{5}{3} \sin(2000t + \arcsin(0.7)) \)

(10) Find the period, frequency, amplitude, and phase shift for these functions, and express each in the form \(d \sin(\alpha t + \beta) \):

(a) \(f(t) = 4 \sin(300t) + 5 \cos(300t) \)
(b) \(g(t) = 2 \sin(450\pi t) - 2 \cos(450\pi t) \)
(c) \(h(t) = -\sin(1500\pi t) + 3 \cos(1500\pi t) \)