Homework 3, Math 421, Fall 2003

Due Friday, September 26.

1. Show that if \(h(z) \) is a complex valued harmonic function, i.e., it satisfies Laplace’s equation, such that \(z h(z) \) is also harmonic, then \(h(z) \) is holomorphic.

2. Show that \(\log |z| \) is harmonic on the punctured plane \(\mathbb{C} \setminus \{0\} \) but has no conjugate harmonic function on \(\mathbb{C} \setminus \{0\} \), though it does have a conjugate harmonic function on the slit plane \(\mathbb{C} \setminus (-\infty, 0]\).

3. Let \(A \) and \(B \) be positive real numbers with \(B < \pi \). Find a conformal mapping from the strip \(-A < \text{Re} \, z < A\) onto the wedge \(-B < \text{Arg} \, z < B\).

4. Show that the image of a straight line under the inversion \(f(z) = \frac{1}{z} \) is a straight line or a circle, depending on whether the line passes through the origin.

5. In any group \(G \), two elements \(g \) and \(h \) are called conjugate if there exists \(a \in G \) such that \(h = aga^{-1} \). This is easily seen to be an equivalence relation on \(G \). (You don’t need to prove this.) This equivalence classes are called conjugacy classes.

Classify conjugacy classes in the group of fractional linear transformations \(f \) by establishing the following:

(a) If \(f \) is not the identity has either one or two fixed points.

(b) If \(f \) has two fixed points, then \(f \) is conjugate to a dilation \(z \mapsto az \) with \(a \neq 0, 1 \). Is \(a \) unique?

(c) If \(f \) has one fixed point then \(f \) is conjugate to the translation \(z \mapsto z + 1 \).