Composition of Haar Paraproducts

Brett D. Wick

Georgia Institute of Technology
School of Mathematics
Chongqing Analysis Meeting IV
Chongqing University
Chongqing, China June 1, 2013

This talk is based on joint work with:

Eric T. Sawyer
McMaster University

Sandra Pott
Lund University

Maria Reguera Rodriguez

Universidad Autónoma de Barcelona

Sarason's Conjecture

- $H^{2}(\mathbb{D})$, the $L^{2}(\mathbb{T})$ closure of the analytic polynomials on \mathbb{D}.
- $\mathbb{P}: L^{2}(\mathbb{T}) \rightarrow H^{2}(\mathbb{D})$ be the orthogonal projection.
- A Toeplitz operator with symbol φ is the following map from $H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}):$

$$
T_{\varphi}(f) \equiv \mathbb{P}(\varphi f)
$$

- An important question raised by Sarason is the following:

Conjecture (Sarason Conjecture)

The composition of $T_{\varphi} T_{\bar{\psi}}$ is bounded on $H^{2}(\mathbb{D})$ if and only if

$$
\sup _{z \in \mathbb{D}}\left(\int_{\mathbb{T}} \frac{1-|z|^{2}}{|1-z \bar{\xi}|^{2}}|\varphi(\xi)|^{2} d m(\xi)\right)\left(\int_{\mathbb{T}} \frac{1-|z|^{2}}{|1-z \bar{\xi}|^{2}}|\psi(\xi)|^{2} d m(\xi)\right)<\infty
$$

Unfortunately, this is not true! A counterexample was constructed by Nazarov.

The Sarason Conjecture \& Hilbert Transform

Question (Sarason Question (Revised Version))

Obtain necessary and sufficient (testable (?)) conditions so that one can tell if $T_{\varphi} T_{\bar{\psi}}$ is bounded on $H^{2}(\mathbb{D})$ by evaluating these conditions.
Possible to rephrase this question as one about the two-weight boundedness of the Hilbert transform.

- Let M_{ϕ} denote multiplication by $\phi: M_{\phi} f \equiv \phi f$;
- $H^{2}\left(|\phi|^{2}\right)$ is the $L^{2}(\mathbb{T})$ closure of $p \phi$ where p is an analytic polynomial;

$$
\begin{array}{ccc}
H^{2} & \xrightarrow{T_{\varphi} T_{\bar{\psi}}} & H^{2} \\
M_{\bar{\psi}} \downarrow & & \downarrow M_{\varphi} \\
L^{2}\left(\mathbb{T} ;|\psi|^{-2}\right) & \xrightarrow{H} & L^{2}\left(\mathbb{T} ;|\varphi|^{2}\right)
\end{array}
$$

Deep work by Nazarov, Treil, Volberg, and then subsequent work by Lacey, Sawyer, Shen, Uriarte-Tuero allow for an answer in terms of the Hilbert transform.
B. D. Wick (Georgia Tech)

Composition of Haar Paraproducts
CAM IV

Haar Paraproducts

- $L^{2} \equiv L^{2}(\mathbb{R})$;
- \mathcal{D} is the standard grid of dyadic intervals on \mathbb{R};
- Define the Haar function h_{I}^{0} and averaging function h_{I}^{1} by

$$
\begin{gathered}
h_{I}^{0} \equiv h_{I} \equiv \frac{1}{\sqrt{|I|}}\left(-\mathbf{1}_{I_{-}}+\mathbf{1}_{I_{+}}\right) \quad I \in \mathcal{D} \\
h_{I}^{1} \equiv \frac{1}{|I|} \mathbf{1}_{I} \quad I \in \mathcal{D} .
\end{gathered}
$$

$$
h_{[0,1]}^{1}(x)
$$

$h_{[0,1]}^{0}(x)$

- $\left\{h_{I}\right\}_{I \in \mathcal{D}}$ is an orthonormal basis of L^{2}.

Haar Paraproducts from Multiplication Operators
Given a function b and f it is possible to study their pointwise product by expanding in their Haar series:

$$
\begin{aligned}
b f= & \left(\sum_{I \in \mathcal{D}}\left\langle b, h_{I}\right\rangle_{L^{2}} h_{I}\right)\left(\sum_{J \in \mathcal{D}}\left\langle f, h_{J}\right\rangle_{L^{2}} h_{J}\right) \\
= & \sum_{I, J \in \mathcal{D}}\left\langle b, h_{I}\right\rangle_{L^{2}}\left\langle f, h_{J}\right\rangle_{L^{2}} h_{I} h_{J} \\
= & \left(\sum_{I=J}+\sum_{I \subsetneq J}+\sum_{J \subsetneq I}\right)\left\langle b, h_{I}\right\rangle_{L^{2}}\left\langle f, h_{J}\right\rangle_{L^{2}} h_{I} h_{J} \\
= & \sum_{I \in \mathcal{D}}\left\langle b, h_{I}\right\rangle_{L^{2}}\left\langle f, h_{I}\right\rangle_{L^{2}} h_{I}^{1}+\sum_{I \in \mathcal{D}}\left\langle b, h_{I}\right\rangle_{L^{2}}\left\langle f, h_{I}^{1}\right\rangle_{L^{2}} h_{I} \\
& +\sum_{I \in \mathcal{D}}\left\langle b, h_{I}^{1}\right\rangle_{L^{2}}\left\langle f, h_{I}\right\rangle_{L^{2}} h_{I} .
\end{aligned}
$$

Haar Paraproducts

Definition (Haar Paraproducts)

Given a symbol sequence $b=\left\{b_{I}\right\}_{I \in \mathcal{D}}$ and a pair $(\alpha, \beta) \in\{0,1\}^{2}$, define the dyadic paraproduct acting on a function f by

$$
\mathrm{P}_{b}^{(\alpha, \beta)} f \equiv \sum_{I \in \mathcal{D}} b_{I}\left\langle f, h_{I}^{\beta}\right\rangle_{L^{2}} h_{I}^{\alpha} .
$$

The index (α, β) is referred to as the type of $\mathrm{P}_{b}^{(\alpha, \beta)}$.

Question (Discrete Sarason Question)

For each choice of pairs $(\alpha, \beta),(\epsilon, \delta) \in\{0,1\}^{2}$, obtain necessary and sufficient conditions on symbols b and d so that

$$
\left\|\mathrm{P}_{b}^{(\alpha, \beta)} \circ \mathrm{P}_{d}^{(\epsilon, \delta)}\right\|_{L^{2} \rightarrow L^{2}}<\infty
$$

B. D. Wick (Georgia Tech)

Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of $\mathrm{P}_{b}^{(\alpha, 0)} \circ \mathrm{P}_{d}^{(0, \beta)}$ reduces to the behavior of $P_{a}^{(\alpha, \beta)}$ for a special symbol a. For $f, g \in L^{2}$, let $f \otimes g: L^{2} \rightarrow L^{2}$ be the map given by

$$
f \otimes g(h) \equiv f\langle g, h\rangle_{L^{2}} .
$$

Then:

$$
\begin{aligned}
\mathrm{P}_{b}^{(\alpha, 0)} \circ \mathrm{P}_{d}^{(0, \beta)} & =\left(\sum_{I \in \mathcal{D}} b_{I} h_{I}^{\alpha} \otimes h_{I}\right)\left(\sum_{J \in \mathcal{D}} d_{J} h_{J} \otimes h_{J}^{\beta}\right) \\
& =\sum_{I \in \mathcal{D}} b_{I} d_{I} h_{I}^{\alpha} \otimes h_{I}^{\beta} \\
& =P_{b \circ d}^{(\alpha, \beta)} .
\end{aligned}
$$

Here $b \circ d$ is the Schur product of the symbols, i.e., $(b \circ d)_{I}=b_{I} d_{I}$.

Norms and Induced Sequences

For a sequence $a=\left\{a_{I}\right\}_{I \in \mathcal{D}}$ define the following quantities:

$$
\begin{aligned}
\|a\|_{\ell \infty} & \equiv \sup _{I \in \mathcal{D}}\left|a_{I}\right| \\
\|a\|_{C M} & \equiv \sqrt{\sup _{I \in \mathcal{D}} \frac{1}{|I|} \sum_{J \subset I}\left|a_{J}\right|^{2}} .
\end{aligned}
$$

Associate to $\left\{a_{I}\right\}_{I \in \mathcal{D}}$ two additional sequences indexed by \mathcal{D} :

$$
\begin{aligned}
E(a) & \equiv\left\{\frac{1}{|I|} \sum_{J \subset I} a_{J}\right\}_{I \in \mathcal{D}} ; \\
\widehat{S}(a) & \equiv\left\{\left\langle\sum_{J \in \mathcal{D}} a_{J} h_{J}^{1}, h_{I}\right\rangle_{L^{2}}\right\}_{I \in \mathcal{D}}=\left\{\sum_{J \subsetneq I} a_{J} \widehat{h_{J}^{1}}(I)\right\}_{I \in \mathcal{D}} .
\end{aligned}
$$

Classical Characterizations

Theorem (Characterizations of Type (0,0), (0,1), and (1,0$)$)
The following characterizations are true:

$$
\begin{aligned}
& \left\|\mathrm{P}_{a}^{(0,0)}\right\|_{L^{2} \rightarrow L^{2}}=\|a\|_{\ell \infty} ; \\
& \left\|\mathrm{P}_{a}^{(0,1)}\right\|_{L^{2} \rightarrow L^{2}}=\left\|\mathrm{P}_{a}^{(1,0)}\right\|_{L^{2} \rightarrow L^{2}} \approx\|a\|_{C M} . \\
& \quad \mathrm{P}_{a}^{(1,1)}=\mathrm{P}_{\widehat{S}(a)}^{(1,0)}+\mathrm{P}_{\widehat{S}(a)}^{(0,1)}+\mathrm{P}_{E(a)}^{(0,0)} .
\end{aligned}
$$

Theorem (Characterization of Type $(1,1)$)

The operator norm $\left\|\mathrm{P}_{a}^{(1,1)}\right\|_{L^{2} \rightarrow L^{2}}$ of $\mathrm{P}_{a}^{(1,1)}$ on L^{2} satisfies

$$
\left\|\mathrm{P}_{a}^{(1,1)}\right\|_{L^{2} \rightarrow L^{2}} \approx\|\widehat{S}(a)\|_{C M}+\|E(a)\|_{\ell \infty}
$$

B. D. Wick (Georgia Tech)

Proof of the Easy Characterizations

A simple computation gives

$$
\begin{aligned}
\left\|\mathrm{P}_{a}^{(0,0)} f\right\|_{L^{2}}^{2} & =\sum_{I, I^{\prime} \in \mathcal{D}} a_{I} \overline{a_{I^{\prime}}}\left\langle f, h_{I}\right\rangle_{L^{2}} \overline{\left\langle f, h_{I^{\prime}}\right\rangle_{L^{2}}}\left\langle h_{I}, h_{I^{\prime}}\right\rangle_{L^{2}} \\
& =\sum_{I \in \mathcal{D}}\left|a_{I}\right|^{2}\left|\left\langle f, h_{I}\right\rangle_{L^{2}}\right|^{2}, \\
\|f\|_{L^{2}}^{2} & =\sum_{I \in \mathcal{D}}\left|\left\langle f, h_{I}\right\rangle_{L^{2}}\right|^{2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left\|\mathrm{P}_{a}^{(0,1)} f\right\|_{L^{2}}^{2} & =\sum_{I, I^{\prime} \in \mathcal{D}} a_{I} \overline{a_{I^{\prime}}}\left\langle f, h_{I}^{1}\right\rangle_{L^{2}} \overline{\left\langle f, h_{I^{\prime}}^{1}\right\rangle_{L^{2}}}\left\langle h_{I}, h_{I^{\prime}}\right\rangle_{L^{2}} \\
& =\sum_{I \in \mathcal{D}}\left|a_{I}\right|^{2}\left|\left\langle f, h_{I}^{1}\right\rangle_{L^{2}}\right|^{2}
\end{aligned}
$$

Proof of the Easy Characterizations

Theorem (Carleson Embedding Theorem)

Let $\left\{\alpha_{I}\right\}_{I \in \mathcal{D}}$ be positive constants. The following two statements are equivalent:

$$
\begin{aligned}
\sum_{I \in \mathcal{D}} \alpha_{I}\left\langle f, h_{I}^{1}\right\rangle_{L^{2}}^{2} & \lesssim C\|f\|_{L^{2}}^{2} \quad \forall f \in L^{2} \\
\sup _{I \in \mathcal{D}} \frac{1}{|I|} \sum_{J \subset I} \alpha_{J} & \leq C .
\end{aligned}
$$

Then the Carleson Embedding Theorem gives

$$
\left\|\mathrm{P}_{a}^{(0,1)}\right\|_{L^{2} \rightarrow L^{2}} \lesssim\|a\|_{C M} .
$$

Let \hat{I} denote the parent of I, and then we have

$$
\left\|\mathrm{P}_{a}^{(0,1)}\right\|_{L^{2} \rightarrow L^{2}}^{2} \geq\left\|\mathrm{P}_{a}^{(0,1)} h_{\hat{I}}\right\|_{L^{2}}^{2} \gtrsim \frac{1}{|I|} \sum_{J \subset I}\left|a_{J}\right|^{2} .
$$

B. D. Wick (Georgia Tech)

Decomposing $(1,1)$ into Pieces

Expand the averaging functions in a Haar series:

$$
h_{I}^{1}=\sum_{J \supsetneq I}\left\langle h_{I}^{1}, h_{J}\right\rangle_{L^{2}} h_{J},
$$

$$
\begin{aligned}
\mathrm{P}_{a}^{(1,1)} f & =\sum_{I \in \mathcal{D}} a_{I}\left\langle f, h_{I}^{1}\right\rangle_{L^{2}} h_{I}^{1} \\
& =\sum_{I \in \mathcal{D}} a_{I}\left\langle f,\left(\sum_{J \supsetneq I}\left\langle h_{I}^{1}, h_{J}\right\rangle_{L^{2}} h_{J}\right)\right\rangle_{L^{2}}\left(\sum_{K \supsetneq I}\left\langle h_{I}^{1}, h_{K}\right\rangle_{L^{2}} h_{K}\right) \\
& \left.=\left\{\sum_{J \subsetneq K}+\sum_{K \subsetneq J}+\sum_{J=K}\right\}_{I \subset J \cap K} a_{I}\left\langle h_{I}^{1}, h_{J}\right\rangle_{L^{2}}\left\langle h_{I}^{1}, h_{K}\right\rangle_{L^{2}}\left\langle f, h_{J}\right\rangle_{L^{2}}\right\rangle \\
& \equiv \mathrm{P}_{\widehat{S}(a)}^{(1,0)} f+\mathrm{P} \widehat{\widehat{S}(a)}(0,1) f+\mathrm{P}_{E(a)}^{(0,0)} f .
\end{aligned}
$$

Alternate Interpretations: Testing Conditions

It is easy to see for paraproducts of type $(0,0)$ that:

$$
\begin{aligned}
\left\|\mathrm{P}_{a}^{(0,0)}\right\|_{L^{2} \rightarrow L^{2}} & =\|a\|_{\ell \infty} \\
& =\sup _{I \in \mathcal{D}}\left\|\mathrm{P}_{a}^{(0,0)} h_{I}\right\|_{L^{2}}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\left\|\mathrm{P}_{a}^{(1,0)}\right\|_{L^{2} \rightarrow L^{2}} & =\left\|\mathrm{P}_{a}^{(0,1)}\right\|_{L^{2} \rightarrow L^{2}} \\
& \approx\|a\|_{C M} \\
& \approx \sup _{I \in \mathcal{D}}\left\|_{a}^{(0,1)} h_{I}\right\|_{L^{2}}
\end{aligned}
$$

These observations suggest seeking a characterization for the other compositions in terms of testing conditions on classes of functions.

Two Weight Inequalities in Harmonic Analysis

Given weights u and v on \mathbb{R} and an operator T a problem one frequently encounters in harmonic analysis is the following:

Question

Determine necessary and sufficient conditions on T, u, and v so that

$$
T: L^{2}(\mathbb{R} ; u) \rightarrow L^{2}(\mathbb{R} ; v)
$$

is bounded.

Meta-Theorem (Characterization of Boundedness via Testing)

The operator $T: L^{2}(\mathbb{R} ; u) \rightarrow L^{2}(\mathbb{R} ; u)$ is bounded if and only if

$$
\begin{aligned}
\left\|T\left(u 1_{Q}\right)\right\|_{L^{2}(v)} & \lesssim\left\|1_{Q}\right\|_{L^{2}(u)} \\
\left\|T^{*}\left(v 1_{Q}\right)\right\|_{L^{2}(u)} & \lesssim\left\|1_{Q}\right\|_{L^{2}(v)}
\end{aligned}
$$

B. D. Wick (Georgia Tech)

Characterization of Type ($0,1,1,0$)

For a sequence a, and interval $I \in \mathcal{D}$ let $\mathrm{Q}_{I} a \equiv \sum_{J \subset I} a_{J} h_{J}$.
Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)
The composition $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}$ is bounded on L^{2} if and only if both

$$
\begin{aligned}
& \left\|\mathrm{Q}_{I} \mathrm{P}_{b}^{(0,1)} \mathrm{P}_{d}^{(1,0)}\left(\mathrm{Q}_{I} \bar{d}\right)\right\|_{L^{2}}^{2} \leq C_{1}^{2}\left\|\mathrm{Q}_{I} d\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} ; \\
& \left\|\mathrm{Q}_{I} \mathrm{P}_{d}^{(0,1)} \mathrm{P}_{b}^{(1,0)}\left(\mathrm{Q}_{I} \bar{b}\right)\right\|_{L^{2}}^{2} \leq C_{2}^{2}\left\|\mathrm{Q}_{I} b\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Moreover, the norm of $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}$ on L^{2} satisfies

$$
\left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}\right\|_{L^{2} \rightarrow L^{2}} \approx C_{1}+C_{2}
$$

where C_{1} and C_{2} are the best constants appearing above.

Rephrasing the Testing Conditions

We want to rephrase the testing conditions on $\mathrm{Q}_{I} \bar{d}$ and $\mathrm{Q}_{I} \bar{b}$:

$$
\begin{aligned}
& \left\|\mathrm{Q}_{I} \mathrm{P}_{b}^{(0,1)} \mathrm{P}_{d}^{(1,0)}\left(\mathrm{Q}_{I} \bar{d}\right)\right\|_{L^{2}}^{2} \leq C_{1}^{2}\left\|\mathrm{Q}_{I} d\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} ; \\
& \left\|\mathrm{Q}_{I} \mathrm{P}_{d}^{(0,1)} \mathrm{P}_{b}^{(1,0)}\left(\mathrm{Q}_{I} \bar{b}\right)\right\|_{L^{2}}^{2} \leq C_{2}^{2}\left\|\mathrm{Q}_{I} b\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

It isn't hard to see that these are equivalent to the following inequalities on the sequences:

$$
\begin{aligned}
& \sum_{J \subset I}\left|b_{J}\right|^{2} \frac{1}{|J|^{2}}\left(\sum_{L \subset J}\left|d_{L}\right|^{2}\right)^{2} \leq C_{1}^{2} \sum_{L \subset I}\left|d_{L}\right|^{2} \quad \forall I \in \mathcal{D} ; \\
& \sum_{J \subset I}\left|d_{J}\right|^{2} \frac{1}{|J|^{2}}\left(\sum_{L \subset J}\left|b_{L}\right|^{2}\right)^{2} \leq C_{2}^{2} \sum_{L \subset I}\left|b_{L}\right|^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Characterization of Type ($0,1,0,0$)

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$ is bounded on L^{2} if and only if both

$$
\begin{aligned}
\left|d_{I}\right|^{2}\left\|\mathrm{P}_{b}^{(0,1)} h_{I}\right\|_{L^{2}}^{2} & \leq C_{1}^{2} \quad \forall I \in \mathcal{D} ; \\
\left\|\mathrm{Q}_{I} \mathrm{P}_{d}^{(0,0)} \mathrm{P}_{b}^{(1,0)} \mathrm{Q}_{I} \bar{b}\right\|_{L^{2}}^{2} & \leq C_{2}^{2}\left\|\mathrm{Q}_{I} b\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Moreover, the norm of $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$ on L^{2} satisfies

$$
\left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}\right\|_{L^{2} \rightarrow L^{2}} \approx C_{1}+C_{2}
$$

where C_{1} and C_{2} are the best constants appearing above.

Rephrasing Testing Conditions

Again, it is possible to recast the conditions:

$$
\begin{aligned}
\left|d_{I}\right|^{2}\left\|\mathrm{P}_{b}^{(0,1)} h_{I}\right\|_{L^{2}}^{2} & \leq C_{1}^{2} \quad \forall I \in \mathcal{D} ; \\
\left\|\mathrm{Q}_{I} \mathrm{P}_{d}^{(0,0)} \mathrm{P}_{b}^{(1,0)} \mathrm{Q}_{I} \bar{b}\right\|_{L^{2}}^{2} & \leq C_{2}^{2}\left\|\mathrm{Q}_{I} b\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D}
\end{aligned}
$$

as expressions depending only on the sequences. In particular, these are equivalent to the following inequalities:

$$
\begin{aligned}
\frac{\left|d_{I}\right|^{2}}{|I|} \sum_{L \subsetneq I}\left|b_{L}\right|^{2} & \leq C_{1}^{2} \quad \forall I \in \mathcal{D} ; \\
\sum_{J \subset I} \frac{\left|d_{J}\right|^{2}}{|J|}\left(\sum_{K \subset J_{+}}\left|b_{K}\right|^{2}-\sum_{K \subset J_{-}}\left|b_{K}\right|^{2}\right)^{2} & \leq C_{2}^{2} \sum_{L \subset I}\left|b_{L}\right|^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Preliminaries

For $I \in \mathcal{D}$ set

$$
\begin{aligned}
T(I) \equiv I \times\left[\frac{|I|}{2},|I|\right] & \text { (Carleson Tile); } \\
Q(I) \equiv I \times[0,|I|]=\bigcup_{J \subset I} T(J) & \text { (Carleson Square). }
\end{aligned}
$$

- The dyadic lattice \mathcal{D} is in correspondence with the Carleson Tiles.
- Let \mathcal{H} denote the upper half plane $\mathbb{C}_{+}: \mathcal{H}=\bigcup_{I \in \mathcal{D}} T(I)$.
- For a non-negative function σ let $L^{2}(\mathcal{H} ; \sigma)$ denote the functions that are square integrable with respect to $\sigma d A$, i.e,

$$
\|f\|_{L^{2}(\mathcal{H} ; \sigma)}^{2} \equiv \int_{\mathcal{H}}|f(z)|^{2} \sigma(z) d A(z)<\infty .
$$

When $\sigma \equiv 1, L^{2}(\mathcal{H} ; 1) \equiv L^{2}(\mathcal{H})$.

- For $f \in L^{2}(\mathcal{H})$, let $\widetilde{f} \equiv \frac{f}{\|f\|_{L^{2}(\mathcal{H})}}$ denote the normalized function.

Functions Constant on Tiles

Let $L_{c}^{2}(\mathcal{H}) \subset L^{2}(\mathcal{H})$ be the subspace of functions which are constant on tiles. Namely, $f: \mathcal{D} \rightarrow \mathbb{C}$

$$
f=\sum_{I \in \mathcal{D}} f_{I} \mathbf{1}_{T(I)}
$$

Then

$$
\begin{aligned}
L_{c}^{2}(\mathcal{H}) & \equiv\left\{f: \mathcal{D} \rightarrow \mathbb{C}: \sum_{I \in \mathcal{D}}|f(I)|^{2}|I|^{2}<\infty\right\} \\
\|f\|_{L_{c}^{2}(\mathcal{H})}^{2} & \equiv \frac{1}{2} \sum_{I \in \mathcal{D}}|f(I)|^{2}|I|^{2} .
\end{aligned}
$$

Easy to show:

$$
\begin{aligned}
& \left\{\widetilde{\mathbf{1}}_{T(I)}\right\}_{I \in \mathcal{D}} \text { is an orthonormal basis of } L_{c}^{2}(\mathcal{H}) ; \\
& \left\{\widetilde{\mathbf{1}}_{Q(I)}\right\}_{I \in \mathcal{D}} \text { is an Riesz basis of } L_{c}^{2}(\mathcal{H}) .
\end{aligned}
$$

The Gram Matrix of $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}$

Let $\mathfrak{G}_{\mathrm{P}_{b}^{(0,1)}{ }_{\mathrm{P}}^{d}} \mathrm{P}_{d}^{(1,0)}=\left[G_{I, J}\right]_{I, J \in \mathcal{D}}$ be the Gram matrix of the operator $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}$ relative to the Haar basis $\left\{h_{I}\right\}_{I \in \mathcal{D}}$. A simple computation show that it has entries:

$$
\begin{aligned}
G_{I, J} & =\left\langle\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)} h_{J}, h_{I}\right\rangle_{L^{2}}=\left\langle\mathrm{P}_{d}^{(1,0)} h_{J}, \mathrm{P}_{b}^{(1,0)} h_{I}\right\rangle_{L^{2}} \\
& =\left\langle d_{J} h_{J}^{1}, b_{I} h_{I}^{1}\right\rangle_{L^{2}} \\
& =\overline{b_{I}} d_{J} \frac{|I \cap J|}{|I||J|}=\left\{\begin{array}{clc}
\overline{b_{I}} d_{J} \frac{1}{|T|} & \text { if } & J \subset I \\
\overline{b_{I}} d_{J} \frac{1}{|J|} & \text { if } & I \subset J \\
0 & \text { if } & I \cap J=\emptyset .
\end{array}\right.
\end{aligned}
$$

Idea: Construct $\mathrm{T}_{b, d}^{(0,1,1,0)}: L_{c}^{2}(\mathcal{H}) \rightarrow L_{c}^{2}(\mathcal{H})$ that has the same Gram matrix as $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}$, but with respect to the basis $\left\{\widetilde{\mathbf{1}}_{T(I)}\right\}_{I \in \mathcal{D}}$.

The Operator $\mathrm{T}_{b, d}^{(0,1,1,0)}$ and it Gram Matrix

For $\lambda \in \mathbb{R}$ and $a=\left\{a_{I}\right\}_{I \in \mathcal{D}}$ the multiplication operator $\mathcal{M}_{a}^{\lambda}$ is defined on basis elements $\widetilde{\mathbf{1}}_{T(K)}$ by

$$
\mathcal{M}_{a}^{\lambda} \widetilde{\mathbf{1}}_{T(K)} \equiv a_{K}|K|^{\lambda} \widetilde{\mathbf{1}}_{T(K)}
$$

Define an operator $\mathrm{T}_{b, d}^{(0,1,1,0)}$ on $L_{c}^{2}(\mathcal{H})$ by

$$
\mathrm{T}_{b, d}^{(0,1,1,0)} \equiv \mathcal{M} \frac{0}{b}\left(\sum_{K \in \mathcal{D}} \widetilde{\mathbf{1}}_{T(K)} \otimes \widetilde{\mathbf{1}}_{Q(K)}\right) \mathcal{M}_{d}^{-1}
$$

Then the Gram matrix $\mathfrak{G}_{\mathrm{T}_{b, d}^{(0,1,1,0)}}=\left[G_{I, J}\right]_{I, J \in \mathcal{D}}$ of $\mathrm{T}_{b, d}^{(0,1,1,0)}$ relative to the basis $\left\{\widetilde{\mathbf{1}}_{T(I)}\right\}_{I \in \mathcal{D}}$ has entries

$$
\begin{aligned}
G_{I, J} & =\left\langle\mathrm{T}_{b, d}^{(0,1,1,0)} \widetilde{\mathbf{1}}_{T(J)}, \widetilde{\mathbf{1}}_{T(I)}\right\rangle_{L^{2}(\mathcal{H})} \\
& =\overline{b_{I}} d_{J} \sqrt{2} \frac{|Q(I) \cap T(J)|}{|I||J|^{2}}=\frac{1}{\sqrt{2}}\left\{\begin{array}{cll}
\overline{b_{I}} d_{J} \frac{1}{|T|} & \text { if } & J \subset I \\
0 & \text { if } & J \not \subset I .
\end{array}\right.
\end{aligned}
$$

B. D. Wick (Georgia Tech)

Connecting the Problem to a Two Weight Inequality

Up to an absolute constant, $\mathfrak{G}_{\mathrm{T}_{b, d}^{(0,1,1,0)}}$ matches $\mathfrak{G}_{\mathrm{P}_{b}^{(0,1)}{ }_{o \mathrm{P}_{d}^{(1,0)}} \text { in the lower }}$ triangle where $J \subset I$. So,

$$
\left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}\right\|_{L^{2} \rightarrow L^{2}} \approx\left\|\mathrm{~T}_{b, d}^{(0,1,1,0)}\right\|_{L^{2}(\mathcal{H}) \rightarrow L^{2}(\mathcal{H})}+\left\|\mathrm{T}_{d, b}^{(0,1,1,0)}\right\|_{L^{2}(\mathcal{H}) \rightarrow L^{2}(\mathcal{H})} .
$$

The inequality we wish to characterize is

$$
\left\|\mathcal{M} \frac{0}{b} \cup \mathcal{M}_{d}^{-1} f\right\|_{L_{c}^{2}(\mathcal{H})}=\left\|\mathrm{T}_{b, d}^{(0,1,1,0)} f\right\|_{L_{c}^{2}(\mathcal{H})} \lesssim\|f\|_{L_{c}^{2}(\mathcal{H})} .
$$

Define U on $L_{c}^{2}(\mathcal{H})$, where

$$
\mathrm{U} \equiv \sum_{K \in \mathcal{D}} \widetilde{\mathbf{1}}_{T(K)} \otimes \widetilde{\mathbf{1}}_{Q(K)}
$$

For appropriate choice of weights σ and w on \mathcal{H} the desired estimate is simply:

$$
\|\mathrm{U}(\sigma k)\|_{L_{c}^{2}(\mathcal{H} ; w)} \lesssim\|k\|_{L_{c}^{2}(\mathcal{H} ; \sigma)} .
$$

A Two Weight Theorem for Positive Operators

Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)
Let w and σ be non-negative weights on \mathcal{H}. Then

$$
\mathrm{U}(\sigma \cdot): L^{2}(\mathcal{H} ; \sigma) \rightarrow L^{2}(\mathcal{H} ; w)
$$

is bounded if and only if the following testing condition holds:

$$
\left\|\mathbf{1}_{Q(I)} \cup\left(\sigma \mathbf{1}_{Q(I)}\right)\right\|_{L^{2}(\mathcal{H} ; w)}^{2} \leq C_{0}^{2}\left\|\mathbf{1}_{Q(I)}\right\|_{L^{2}(\mathcal{H} ; \sigma)}^{2}
$$

- The proof of this Theorem is a translation of Sawyer's proof strategy for two weight inequalities for positive operators.
- Choosing $w \equiv \sum_{I \in \mathcal{D}}\left|b_{I}\right|^{2} \mathbf{1}_{T(I)}$ and $\sigma \equiv \sum_{I \in \mathcal{D}} \frac{\left|d_{I}\right|^{2}}{|I|^{2}} \mathbf{1}_{T(I)}$ (and unraveling the definitions) gives the forward testing condition.
- Appropriate choice of w and σ will then provide the backward testing condition when studying $T_{d, b}^{(0,1,1,0)}$.
B. D. Wick (Georgia Tech)

The Gram Matrix of $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$

Let $\mathfrak{G}_{\mathrm{P}_{b}^{(0,1)}{ }_{\circ} \mathrm{P}_{d}^{(0,0)}}=\left[G_{I, J}\right]_{I, J \in \mathcal{D}}$ be the Gram matrix of the operator $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$ relative to the Haar basis $\left\{h_{I}\right\}_{I \in \mathcal{D}}$. A simple computation shows its entries are:

$$
\begin{aligned}
G_{I, J} & =\left\langle\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)} h_{J}, h_{I}\right\rangle_{L^{2}}=\left\langle\mathrm{P}_{d}^{(0,0)} h_{J}, \mathrm{P}_{b}^{(1,0)} h_{I}\right\rangle_{L^{2}} \\
& =\left\langle d_{J} h_{J}, b_{I} h_{I}^{1}\right\rangle_{L^{2}}
\end{aligned}
$$

$$
=\overline{b_{I}} d_{J} \widehat{h_{I}^{1}}(J)=\left\{\begin{array}{ccc}
\overline{b_{I}} d_{J} \frac{-1}{\sqrt{|J|}} & \text { if } & I \subset J_{-} \\
\overline{b_{I}} d_{J} \frac{1}{\sqrt{|J|}} & \text { if } & I \subset J_{+} \\
0 & \text { if } & J \subset I \text { or } I \cap J=\emptyset .
\end{array}\right.
$$

Idea: Construct $\mathrm{T}_{b, d}^{(0,1,0,0)}: L_{c}^{2}(\mathcal{H}) \rightarrow L_{c}^{2}(\mathcal{H})$ that has the same Gram matrix as $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$, but with respect to the basis $\left\{\widetilde{\mathbf{1}}_{T(I)}\right\}_{I \in \mathcal{D}}$.

The Operator $\mathrm{T}_{b, d}^{(0,1,0,0)}$

Now consider the operator $\mathrm{T}_{b, d}^{(0,1,0,0)}$ defined by

$$
\mathrm{T}_{b, d}^{(0,1,0,0)} \equiv \mathcal{M}_{\bar{b}}^{-1}\left(\sum_{K \in \mathcal{D}} \tilde{\mathbf{1}}_{Q \pm(K)} \otimes \tilde{\mathbf{1}}_{T(K)}\right) \mathcal{M}_{d}^{\frac{1}{2}} .
$$

Here

$$
\mathbf{1}_{Q_{ \pm}(K)} \equiv-\sum_{L \subset K_{-}} \mathbf{1}_{T(L)}+\sum_{L \subset K_{+}} \mathbf{1}_{T(L)} .
$$

A straightforward computation shows

$$
\begin{aligned}
\left\|\mathbf{1}_{Q_{ \pm}(K)}\right\|_{L^{2}(\mathcal{H})} & =\frac{|K|}{2} ; \\
\mathcal{M}_{a}^{\lambda} \mathbf{1}_{Q_{ \pm}(K)} & =-\sum_{L \subset K_{-}} a_{L}|L|^{\lambda} \mathbf{1}_{T(L)}+\sum_{L \subset K_{+}} a_{L}|L|^{\lambda} \mathbf{1}_{T(L)} .
\end{aligned}
$$

B. D. Wick (Georgia Tech)

The Gram Matrix for the Operator $\mathrm{T}_{b, d}^{(0,1,0,0)}$

The Gram matrix $\mathfrak{G}_{\mathrm{T}_{b, d}^{(0,1,0,0)}}=\left[G_{I, J}\right]_{I, J \in \mathcal{D}}$ of $\mathrm{T}_{b, d}^{(0,1,0,0)}$ relative to the basis $\left\{\tilde{\mathbf{1}}_{T(I)}\right\}_{I \in \mathcal{D}}$ then has entries given by

$$
\begin{aligned}
G_{I, J} & =\left\langle\mathrm{T}_{b, d}^{(0,1,0,0)} \widetilde{\mathbf{1}}_{T(J)}, \widetilde{\mathbf{1}}_{T(I)}\right\rangle_{L^{2}(\mathcal{H})} \\
& =\sqrt{2}\left\{\begin{array}{clc}
-\overline{b_{I}} d_{J}|J|^{-\frac{1}{2}} & \text { if } & I \subset J_{-} \\
\overline{b_{I}} d_{J}|J|^{-\frac{1}{2}} & \text { if } & I \subset J_{+} \\
0 & \text { if } & J \subset I \text { or } I \cap J=\emptyset .
\end{array}\right.
\end{aligned}
$$

Thus, up to an absolute constant, $\mathfrak{G}_{\mathrm{T}_{b, d}^{(0,1,0,0)}}=\mathfrak{G}_{\mathrm{P}_{b}^{(0,1)}{ }^{\circ} \mathrm{P}_{d}^{(0,0)}}$, and so

$$
\left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}\right\|_{L^{2} \rightarrow L^{2}} \approx\left\|\mathrm{~T}_{b, d}^{(0,1,0,0)}\right\|_{L^{2}(\mathcal{H}) \rightarrow L^{2}(\mathcal{H})} .
$$

Connecting to a Two Weight Inequality

The inequality we wish to characterize is:

$$
\left\|\mathcal{M}_{\bar{b}}^{-1} \cup \mathcal{M}_{d}^{\frac{1}{2}} f\right\|_{L_{c}^{2}(\mathcal{H})}=\left\|\top_{b, d}^{(0,1,0,0)} f\right\|_{L_{c}^{2}(\mathcal{H})} \lesssim\|f\|_{L_{c}^{2}(\mathcal{H})}
$$

Where the operator U on $L^{2}(\mathcal{H})$ is defined by

$$
\mathrm{U} \equiv \sum_{K \in \mathcal{D}} \widetilde{\mathbf{1}}_{Q_{ \pm}(K)} \otimes \tilde{\mathbf{1}}_{T(K)}
$$

One sees that the inequality to be characterized is equivalent to:

$$
\|\mathrm{U}(\mu g)\|_{L_{c}^{2}(\mathcal{H} ; \nu)} \lesssim\|g\|_{L_{c}^{2}(\mathcal{H} ; \mu)}
$$

where the weights μ and ν are given by

$$
\begin{aligned}
\nu & \equiv \sum_{I \in \mathcal{D}}\left|b_{I}\right|^{2}|I|^{-2} \mathbf{1}_{T(I)} \\
\mu & \equiv \sum_{I \in \mathcal{D}}\left|d_{I}\right|^{-2}|I|^{-1} \mathbf{1}_{T(I)} .
\end{aligned}
$$

B. D. Wick (Georgia Tech)

Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Suppose that μ and ν are positive measures on \mathcal{H} that are constant on tiles, i.e., $\mu \equiv \sum_{I \in \mathcal{D}} \mu_{I} \mathbf{1}_{T(I)}, \nu \equiv \sum_{I \in \mathcal{D}} \nu_{I} \mathbf{1}_{T(I)}$. Then

$$
\mathrm{U}(\mu \cdot): L_{c}^{2}(\mathcal{H} ; \mu) \rightarrow L_{c}^{2}(\mathcal{H} ; \nu)
$$

if and only if both

$$
\begin{aligned}
\left\|\mathrm{U}\left(\mu \mathbf{1}_{T(I)}\right)\right\|_{L_{c}^{2}(\mathcal{H} ; \nu)} & \leq C_{1}\left\|\mathbf{1}_{T(I)}\right\|_{L_{c}^{2}(\mathcal{H} ; \mu)}=\sqrt{\mu(T(I))}, \\
\left\|\mathbf{1}_{Q(I)} \mathrm{U}^{*}\left(\nu \mathbf{1}_{Q(I)}\right)\right\|_{L_{c}^{2}(\mathcal{H} ; \mu)} & \leq C_{2}\left\|\mathbf{1}_{Q(I)}\right\|_{L_{c}^{2}(\mathcal{H} ; \nu)}=\sqrt{\nu(Q(I))},
\end{aligned}
$$

hold for all $I \in \mathcal{D}$. Moreover, we have that

$$
\|\mathrm{U}\|_{L_{c}^{2}(\mathcal{H} ; \mu) \rightarrow L_{c}^{2}(\mathcal{H} ; \nu)} \approx C_{1}+C_{2}
$$

where C_{1} and C_{2} are the best constants appearing above.

An Application: Linear Bound for Hilbert Transform

- For a weight w, i.e., a positive locally integrable function on \mathbb{R}, let $L^{2}(w) \equiv L^{2}(\mathbb{R} ; w)$.
- A weight belongs to A_{2} if: $[w]_{A_{2}} \equiv \sup _{I}\langle w\rangle_{I}\left\langle w^{-1}\right\rangle_{I}<+\infty$.
- The Hilbert transform is the operator: $H(f)(x) \equiv$ p.v. $\int_{\mathbb{R}} \frac{f(y)}{y-x} d y$.

Theorem (Petermichl)

Let $w \in A_{2}$. Then $\|H\|_{L^{2}(w) \rightarrow L^{2}(w)} \lesssim[w]_{A_{2}}$, and the linear growth is optimal.

- $\|T\|_{L^{2}(w) \rightarrow L^{2}(w)}=\left\|M_{w^{\frac{1}{2}}} T M_{w^{-\frac{1}{2}}}\right\|_{L^{2} \rightarrow L^{2}} ;$
- H is the average of dyadic shifts Ш;
- $M_{w^{\frac{1}{2}}} \amalg M_{w^{-\frac{1}{2}}}$ can be written as a sum of nine compositions of paraproducts; Some of which are amenable to the Theorems above.
- However, each term can be shown to have norm no worse than $[w]_{A_{2}}$.
B. D. Wick (Georgia Tech)

An Open Question

Unfortunately, the methods described do not appear to work to handle type ($0,1,0,1$) compositions. However, the following question is of interest:

Question

For each $I \in \mathcal{D}$ determine function $F_{I}, B_{I} \in L^{2}$ of norm 1 such that $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,1)}$ is bounded on L^{2} if and only if

$$
\begin{aligned}
& \left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,1)} F_{I}\right\|_{L^{2}} \leq C_{1} \quad \forall I \in \mathcal{D} \\
& \left\|\mathrm{P}_{d}^{(1,0)} \circ \mathrm{P}_{b}^{(1,0)} B_{I}\right\|_{L^{2}} \leq C_{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Moreover, we will have

$$
\left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,1)}\right\|_{L^{2} \rightarrow L^{2}} \approx C_{1}+C_{2}
$$

The daydreams of cat herders
(Modified from the Original Dr. Fun Comic)
Thanks to Dechao for Organizing the Meeting!

Thank You!

