Composition of Haar Paraproducts

Brett D. Wick

Georgia Institute of Technology
School of Mathematics
Joint International Meeting of the AMS and the Romanian Mathematical Society
Special Session on Operator Theory and Function Spaces
June 27-30, 2013

This talk is based on joint work with:

Eric T. Sawyer
McMaster University

Sandra Pott
Lund University

Maria Reguera Rodriguez

Universidad Autónoma de Barcelona

Sarason's Conjecture

- $H^{2}(\mathbb{D})$, the $L^{2}(\mathbb{T})$ closure of the analytic polynomials on \mathbb{D}.
- $\mathbb{P}: L^{2}(\mathbb{T}) \rightarrow H^{2}(\mathbb{D})$ be the orthogonal projection.
- A Toeplitz operator with symbol φ is the following map from $H^{2}(\mathbb{D}) \rightarrow H^{2}(\mathbb{D}):$

$$
T_{\varphi}(f) \equiv \mathbb{P}(\varphi f)
$$

- An important question raised by Sarason is the following:

Conjecture (Sarason Conjecture)

The composition of $T_{\varphi} T_{\bar{\psi}}$ is bounded on $H^{2}(\mathbb{D})$ if and only if

$$
\sup _{z \in \mathbb{D}}\left(\int_{\mathbb{T}} \frac{1-|z|^{2}}{|1-z \bar{\xi}|^{2}}|\varphi(\xi)|^{2} d m(\xi)\right)\left(\int_{\mathbb{T}} \frac{1-|z|^{2}}{|1-z \bar{\xi}|^{2}}|\psi(\xi)|^{2} d m(\xi)\right)<\infty
$$

Unfortunately, this is not true! A counterexample was constructed by Nazarov.

The Sarason Conjecture \& Hilbert Transform

Question (Sarason Question (Revised Version))

Obtain necessary and sufficient (testable (?)) conditions so that one can tell if $T_{\varphi} T_{\bar{\psi}}$ is bounded on $H^{2}(\mathbb{D})$ by evaluating these conditions.
Possible to rephrase this question as one about the two-weight boundedness of the Hilbert transform.

- Let M_{ϕ} denote multiplication by $\phi: M_{\phi} f \equiv \phi f$;
- $H^{2}\left(|\phi|^{2}\right)$ is the $L^{2}(\mathbb{T})$ closure of $p \phi$ where p is an analytic polynomial;

$$
\begin{array}{ccc}
H^{2} & \xrightarrow{T_{\varphi} T_{\bar{\psi}}} & H^{2} \\
M_{\bar{\psi}} \downarrow & & \downarrow M_{\varphi} \\
L^{2}\left(\mathbb{T} ;|\psi|^{-2}\right) & \xrightarrow{H} & L^{2}\left(\mathbb{T} ;|\varphi|^{2}\right)
\end{array}
$$

Deep work by Nazarov, Treil, Volberg, and then subsequent work by Lacey, Sawyer, Shen, Uriarte-Tuero allow for an answer in terms of the Hilbert transform.
B. D. Wick (Georgia Tech)

Composition of Haar Paraproducts
Alba Iulia

Haar Paraproducts

- $L^{2} \equiv L^{2}(\mathbb{R})$;
- \mathcal{D} is the standard grid of dyadic intervals on \mathbb{R};
- Define the Haar function h_{I}^{0} and averaging function h_{I}^{1} by

$$
\begin{gathered}
h_{I}^{0} \equiv h_{I} \equiv \frac{1}{\sqrt{|I|}}\left(-\mathbf{1}_{I_{-}}+\mathbf{1}_{I_{+}}\right) \quad I \in \mathcal{D} \\
h_{I}^{1} \equiv \frac{1}{|I|} \mathbf{1}_{I} \quad I \in \mathcal{D} .
\end{gathered}
$$

$$
h_{[0,1]}^{1}(x)
$$

$h_{[0,1]}^{0}(x)$

- $\left\{h_{I}\right\}_{I \in \mathcal{D}}$ is an orthonormal basis of L^{2}.

Haar Paraproducts

Definition (Haar Paraproducts)

Given a symbol sequence $b=\left\{b_{I}\right\}_{I \in \mathcal{D}}$ and a pair $(\alpha, \beta) \in\{0,1\}^{2}$, define the dyadic paraproduct acting on a function f by

$$
\mathrm{P}_{b}^{(\alpha, \beta)} f \equiv \sum_{I \in \mathcal{D}} b_{I}\left\langle f, h_{I}^{\beta}\right\rangle_{L^{2}} h_{I}^{\alpha} .
$$

The index (α, β) is referred to as the type of $\mathrm{P}_{b}^{(\alpha, \beta)}$.

Question (Discrete Sarason Question)

For each choice of pairs $(\alpha, \beta),(\epsilon, \delta) \in\{0,1\}^{2}$, obtain necessary and sufficient conditions on symbols b and d so that

$$
\left\|\mathrm{P}_{b}^{(\alpha, \beta)} \circ \mathrm{P}_{d}^{(\epsilon, \delta)}\right\|_{L^{2} \rightarrow L^{2}}<\infty
$$

B. D. Wick (Georgia Tech)

Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of $\mathrm{P}_{b}^{(\alpha, 0)} \circ \mathrm{P}_{d}^{(0, \beta)}$ reduces to the behavior of $\mathrm{P}_{a}^{(\alpha, \beta)}$ for a special symbol a. For $f, g \in L^{2}$, let $f \otimes g: L^{2} \rightarrow L^{2}$ be the map given by

$$
f \otimes g(h) \equiv f\langle g, h\rangle_{L^{2}} .
$$

Then:

$$
\begin{aligned}
\mathrm{P}_{b}^{(\alpha, 0)} \circ \mathrm{P}_{d}^{(0, \beta)} & =\left(\sum_{I \in \mathcal{D}} b_{I} h_{I}^{\alpha} \otimes h_{I}\right)\left(\sum_{J \in \mathcal{D}} d_{J} h_{J} \otimes h_{J}^{\beta}\right) \\
& =\sum_{I \in \mathcal{D}} b_{I} d_{I} h_{I}^{\alpha} \otimes h_{I}^{\beta} \\
& =P_{b \circ d}^{(\alpha, \beta)} .
\end{aligned}
$$

Here $b \circ d$ is the Schur product of the symbols, i.e., $(b \circ d)_{I}=b_{I} d_{I}$.

Norms and Induced Sequences

For a sequence $a=\left\{a_{I}\right\}_{I \in \mathcal{D}}$ define the following quantities:

$$
\begin{aligned}
\|a\|_{\ell \infty} & \equiv \sup _{I \in \mathcal{D}}\left|a_{I}\right| \\
\|a\|_{C M} & \equiv \sqrt{\sup _{I \in \mathcal{D}} \frac{1}{|I|} \sum_{J \subset I}\left|a_{J}\right|^{2}} .
\end{aligned}
$$

Associate to $\left\{a_{I}\right\}_{I \in \mathcal{D}}$ two additional sequences indexed by \mathcal{D} :

$$
\begin{aligned}
E(a) & \equiv\left\{\frac{1}{|I|} \sum_{J \subset I} a_{J}\right\}_{I \in \mathcal{D}} ; \\
\widehat{S}(a) & \equiv\left\{\left\langle\sum_{J \in \mathcal{D}} a_{J} h_{J}^{1}, h_{I}\right\rangle_{L^{2}}\right\}_{I \in \mathcal{D}}=\left\{\sum_{J \subseteq I} a_{J} \widehat{h_{J}^{1}}(I)\right\}_{I \in \mathcal{D}} .
\end{aligned}
$$

Classical Characterizations

Theorem (Characterizations of Type (0,0), (0,1), and (1,0$)$)
The following characterizations are true:

$$
\begin{aligned}
& \left\|\mathrm{P}_{a}^{(0,0)}\right\|_{L^{2} \rightarrow L^{2}}=\|a\|_{\ell \infty} ; \\
& \left\|\mathrm{P}_{a}^{(0,1)}\right\|_{L^{2} \rightarrow L^{2}}=\left\|\mathrm{P}_{a}^{(1,0)}\right\|_{L^{2} \rightarrow L^{2}} \approx\|a\|_{C M} . \\
& \quad \mathrm{P}_{a}^{(1,1)}=\mathrm{P}_{\widehat{S}(a)}^{(1,0)}+\mathrm{P}_{\widehat{S}(a)}^{(0,1)}+\mathrm{P}_{E(a)}^{(0,0)} .
\end{aligned}
$$

Theorem (Characterization of Type $(1,1)$)

The operator norm $\left\|\mathrm{P}_{a}^{(1,1)}\right\|_{L^{2} \rightarrow L^{2}}$ of $\mathrm{P}_{a}^{(1,1)}$ on L^{2} satisfies

$$
\left\|\mathrm{P}_{a}^{(1,1)}\right\|_{L^{2} \rightarrow L^{2}} \approx\|\widehat{S}(a)\|_{C M}+\|E(a)\|_{\ell \infty}
$$

B. D. Wick (Georgia Tech)

Alternate Interpretations: Testing Conditions

It is easy to see for paraproducts of type $(0,0)$ that:

$$
\begin{aligned}
\left\|\mathrm{P}_{a}^{(0,0)}\right\|_{L^{2} \rightarrow L^{2}} & =\|a\|_{\ell \infty} \\
& =\sup _{I \in \mathcal{D}}\left\|\mathrm{P}_{a}^{(0,0)} h_{I}\right\|_{L^{2}}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\left\|\mathrm{P}_{a}^{(1,0)}\right\|_{L^{2} \rightarrow L^{2}} & =\left\|\mathrm{P}_{a}^{(0,1)}\right\|_{L^{2} \rightarrow L^{2}} \\
& \approx\|a\|_{C M} \\
& \approx \sup _{I \in \mathcal{D}}\left\|_{a}^{(0,1)} h_{I}\right\|_{L^{2}}
\end{aligned}
$$

These observations suggest seeking a characterization for the other compositions in terms of testing conditions on classes of functions.

Two Weight Inequalities in Harmonic Analysis

Given weights u and v on \mathbb{R} and an operator T a problem one frequently encounters in harmonic analysis is the following:

Question

Determine necessary and sufficient conditions on T, u, and v so that

$$
T: L^{2}(\mathbb{R} ; u) \rightarrow L^{2}(\mathbb{R} ; v)
$$

is bounded.

Meta-Theorem (Characterization of Boundedness via Testing)

The operator $T: L^{2}(\mathbb{R} ; u) \rightarrow L^{2}(\mathbb{R} ; v)$ is bounded if and only if

$$
\begin{aligned}
\left\|T\left(u 1_{Q}\right)\right\|_{L^{2}(v)} & \lesssim\left\|1_{Q}\right\|_{L^{2}(u)} \\
\left\|T^{*}\left(v 1_{Q}\right)\right\|_{L^{2}(u)} & \lesssim\left\|1_{Q}\right\|_{L^{2}(v)} .
\end{aligned}
$$

Characterization of Type ($0,1,1,0$)

For a sequence a, and interval $I \in \mathcal{D}$ let $\mathrm{Q}_{I} a \equiv \sum_{J \subset I} a_{J} h_{J}$.
Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)
The composition $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}$ is bounded on L^{2} if and only if both

$$
\begin{aligned}
& \left\|\mathrm{Q}_{I} \mathrm{P}_{b}^{(0,1)} \mathrm{P}_{d}^{(1,0)}\left(\mathrm{Q}_{I} \bar{d}\right)\right\|_{L^{2}}^{2} \leq C_{1}^{2}\left\|\mathrm{Q}_{I} d\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} ; \\
& \left\|\mathrm{Q}_{I} \mathrm{P}_{d}^{(0,1)} \mathrm{P}_{b}^{(1,0)}\left(\mathrm{Q}_{I} \bar{b}\right)\right\|_{L^{2}}^{2} \leq C_{2}^{2}\left\|\mathrm{Q}_{I} b\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Moreover, the norm of $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}$ on L^{2} satisfies

$$
\left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(1,0)}\right\|_{L^{2} \rightarrow L^{2}} \approx C_{1}+C_{2}
$$

where C_{1} and C_{2} are the best constants appearing above.

Rephrasing the Testing Conditions

We want to rephrase the testing conditions on $\mathrm{Q}_{I} \bar{d}$ and $\mathrm{Q}_{I} \bar{b}$:

$$
\begin{aligned}
& \left\|\mathrm{Q}_{I} \mathrm{P}_{b}^{(0,1)} \mathrm{P}_{d}^{(1,0)}\left(\mathrm{Q}_{I} \bar{d}\right)\right\|_{L^{2}}^{2} \leq C_{1}^{2}\left\|\mathrm{Q}_{I} d\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} ; \\
& \left\|\mathrm{Q}_{I} \mathrm{P}_{d}^{(0,1)} \mathrm{P}_{b}^{(1,0)}\left(\mathrm{Q}_{I} \bar{b}\right)\right\|_{L^{2}}^{2} \leq C_{2}^{2}\left\|\mathrm{Q}_{I} b\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

It isn't hard to see that these are equivalent to the following inequalities on the sequences:

$$
\begin{aligned}
& \sum_{J \subset I}\left|b_{J}\right|^{2} \frac{1}{|J|^{2}}\left(\sum_{L \subset J}\left|d_{L}\right|^{2}\right)^{2} \leq C_{1}^{2} \sum_{L \subset I}\left|d_{L}\right|^{2} \quad \forall I \in \mathcal{D} ; \\
& \sum_{J \subset I}\left|d_{J}\right|^{2} \frac{1}{|J|^{2}}\left(\sum_{L \subset J}\left|b_{L}\right|^{2}\right)^{2} \leq C_{2}^{2} \sum_{L \subset I}\left|b_{L}\right|^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Characterization of Type ($0,1,0,0$)

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$ is bounded on L^{2} if and only if both

$$
\begin{aligned}
\left|d_{I}\right|^{2}\left\|\mathrm{P}_{b}^{(0,1)} h_{I}\right\|_{L^{2}}^{2} & \leq C_{1}^{2} \quad \forall I \in \mathcal{D} ; \\
\left\|\mathrm{Q}_{I} \mathrm{P}_{d}^{(0,0)} \mathrm{P}_{b}^{(1,0)} \mathrm{Q}_{I} \bar{b}\right\|_{L^{2}}^{2} & \leq C_{2}^{2}\left\|\mathrm{Q}_{I} b\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Moreover, the norm of $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$ on L^{2} satisfies

$$
\left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}\right\|_{L^{2} \rightarrow L^{2}} \approx C_{1}+C_{2}
$$

where C_{1} and C_{2} are the best constants appearing above.

Rephrasing Testing Conditions

Again, it is possible to recast the conditions:

$$
\begin{aligned}
\left|d_{I}\right|^{2}\left\|\mathrm{P}_{b}^{(0,1)} h_{I}\right\|_{L^{2}}^{2} & \leq C_{1}^{2} \quad \forall I \in \mathcal{D} ; \\
\left\|\mathrm{Q}_{I} \mathrm{P}_{d}^{(0,0)} \mathrm{P}_{b}^{(1,0)} \mathrm{Q}_{I} \bar{b}\right\|_{L^{2}}^{2} & \leq C_{2}^{2}\left\|\mathrm{Q}_{I} b\right\|_{L^{2}}^{2} \quad \forall I \in \mathcal{D}
\end{aligned}
$$

as expressions depending only on the sequences. In particular, these are equivalent to the following inequalities:

$$
\begin{aligned}
\frac{\left|d_{I}\right|^{2}}{|I|} \sum_{L \subsetneq I}\left|b_{L}\right|^{2} & \leq C_{1}^{2} \quad \forall I \in \mathcal{D} ; \\
\sum_{J \subset I} \frac{\left|d_{J}\right|^{2}}{|J|}\left(\sum_{K \subset J_{+}}\left|b_{K}\right|^{2}-\sum_{K \subset J_{-}}\left|b_{K}\right|^{2}\right)^{2} & \leq C_{2}^{2} \sum_{L \subset I}\left|b_{L}\right|^{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Preliminaries

For $I \in \mathcal{D}$ set

$$
\begin{aligned}
T(I) \equiv I \times\left[\frac{|I|}{2},|I|\right] & \text { (Carleson Tile); } \\
Q(I) \equiv I \times[0,|I|]=\bigcup_{J \subset I} T(J) & \text { (Carleson Square). }
\end{aligned}
$$

- The dyadic lattice \mathcal{D} is in correspondence with the Carleson Tiles.
- Let \mathcal{H} denote the upper half plane $\mathbb{C}_{+}: \mathcal{H}=\bigcup_{I \in \mathcal{D}} T(I)$.
- For a non-negative function σ let $L^{2}(\mathcal{H} ; \sigma)$ denote the functions that are square integrable with respect to $\sigma d A$, i.e,

$$
\|f\|_{L^{2}(\mathcal{H} ; \sigma)}^{2} \equiv \int_{\mathcal{H}}|f(z)|^{2} \sigma(z) d A(z)<\infty .
$$

When $\sigma \equiv 1, L^{2}(\mathcal{H} ; 1) \equiv L^{2}(\mathcal{H})$.

- For $f \in L^{2}(\mathcal{H})$, let $\widetilde{f} \equiv \frac{f}{\|f\|_{L^{2}(\mathcal{H})}}$ denote the normalized function.

Functions Constant on Tiles

Let $L_{c}^{2}(\mathcal{H}) \subset L^{2}(\mathcal{H})$ be the subspace of functions which are constant on tiles. Namely, $f: \mathcal{D} \rightarrow \mathbb{C}$

$$
f=\sum_{I \in \mathcal{D}} f_{I} \mathbf{1}_{T(I)}
$$

Then

$$
\begin{aligned}
L_{c}^{2}(\mathcal{H}) & \equiv\left\{f: \mathcal{D} \rightarrow \mathbb{C}: \sum_{I \in \mathcal{D}}|f(I)|^{2}|I|^{2}<\infty\right\} \\
\|f\|_{L_{c}^{2}(\mathcal{H})}^{2} & \equiv \frac{1}{2} \sum_{I \in \mathcal{D}}|f(I)|^{2}|I|^{2} .
\end{aligned}
$$

Easy to show:

$$
\begin{aligned}
& \left\{\widetilde{\mathbf{1}}_{T(I)}\right\}_{I \in \mathcal{D}} \text { is an orthonormal basis of } L_{c}^{2}(\mathcal{H}) ; \\
& \left\{\widetilde{\mathbf{1}}_{Q(I)}\right\}_{I \in \mathcal{D}} \text { is an Riesz basis of } L_{c}^{2}(\mathcal{H}) .
\end{aligned}
$$

The Gram Matrix of $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$

Let $\mathfrak{G}_{\mathrm{P}_{b}^{(0,1)}{ }_{\circ} \mathrm{P}_{d}^{(0,0)}}=\left[G_{I, J}\right]_{I, J \in \mathcal{D}}$ be the Gram matrix of the operator $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$ relative to the Haar basis $\left\{h_{I}\right\}_{I \in \mathcal{D}}$. A simple computation shows its entries are:

$$
\begin{aligned}
G_{I, J} & =\left\langle\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)} h_{J}, h_{I}\right\rangle_{L^{2}}=\left\langle\mathrm{P}_{d}^{(0,0)} h_{J}, \mathrm{P}_{b}^{(1,0)} h_{I}\right\rangle_{L^{2}} \\
& =\left\langle d_{J} h_{J}, b_{I} h_{I}^{1}\right\rangle_{L^{2}}
\end{aligned}
$$

$$
=\overline{b_{I}} d_{J} \widehat{h_{I}^{1}}(J)=\left\{\begin{array}{ccc}
\overline{b_{I}} d_{J} \frac{-1}{\sqrt{|J|}} & \text { if } & I \subset J_{-} \\
\overline{b_{I}} d_{J} \frac{1}{\sqrt{|J|}} & \text { if } & I \subset J_{+} \\
0 & \text { if } & J \subset I \text { or } I \cap J=\emptyset .
\end{array}\right.
$$

Idea: Construct $\mathrm{T}_{b, d}^{(0,1,0,0)}: L_{c}^{2}(\mathcal{H}) \rightarrow L_{c}^{2}(\mathcal{H})$ that has the same Gram matrix as $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,0)}$, but with respect to the basis $\left\{\widetilde{\mathbf{1}}_{T(I)}\right\}_{I \in \mathcal{D}}$.

The Operator $\mathrm{T}_{b, d}^{(0,1,0,0)}$

Now consider the operator $\mathrm{T}_{b, d}^{(0,1,0,0)}$ defined by

$$
\mathrm{T}_{b, d}^{(0,1,0,0)} \equiv \mathcal{M}_{\bar{b}}^{-1}\left(\sum_{K \in \mathcal{D}} \tilde{\mathbf{1}}_{Q \pm(K)} \otimes \tilde{\mathbf{1}}_{T(K)}\right) \mathcal{M}_{d}^{\frac{1}{2}} .
$$

Here

$$
\mathbf{1}_{Q_{ \pm}(K)} \equiv-\sum_{L \subset K_{-}} \mathbf{1}_{T(L)}+\sum_{L \subset K_{+}} \mathbf{1}_{T(L)} .
$$

A straightforward computation shows

$$
\begin{aligned}
\left\|\mathbf{1}_{Q_{ \pm}(K)}\right\|_{L^{2}(\mathcal{H})} & =\frac{|K|}{2} ; \\
\mathcal{M}_{a}^{\lambda} \mathbf{1}_{Q_{ \pm}(K)} & =-\sum_{L \subset K_{-}} a_{L}|L|^{\lambda} \mathbf{1}_{T(L)}+\sum_{L \subset K_{+}} a_{L}|L|^{\lambda} \mathbf{1}_{T(L)} .
\end{aligned}
$$

Connecting to a Two Weight Inequality

The inequality we wish to characterize is:

$$
\left\|\mathcal{M}_{\bar{b}}^{-1} \cup \mathcal{M}_{d}^{\frac{1}{2}} f\right\|_{L_{c}^{2}(\mathcal{H})}=\left\|\top_{b, d}^{(0,1,0,0)} f\right\|_{L_{c}^{2}(\mathcal{H})} \lesssim\|f\|_{L_{c}^{2}(\mathcal{H})}
$$

Where the operator U on $L^{2}(\mathcal{H})$ is defined by

$$
\mathrm{U} \equiv \sum_{K \in \mathcal{D}} \widetilde{\mathbf{1}}_{Q_{ \pm}(K)} \otimes \tilde{\mathbf{1}}_{T(K)}
$$

One sees that the inequality to be characterized is equivalent to:

$$
\|\mathrm{U}(\mu g)\|_{L_{c}^{2}(\mathcal{H} ; \nu)} \lesssim\|g\|_{L_{c}^{2}(\mathcal{H} ; \mu)}
$$

where the weights μ and ν are given by

$$
\begin{aligned}
\nu & \equiv \sum_{I \in \mathcal{D}}\left|b_{I}\right|^{2}|I|^{-2} \mathbf{1}_{T(I)} \\
\mu & \equiv \sum_{I \in \mathcal{D}}\left|d_{I}\right|^{-2}|I|^{-1} \mathbf{1}_{T(I)} .
\end{aligned}
$$

Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Let

$$
\mathrm{U} \equiv \sum_{K \in \mathcal{D}} \widetilde{\mathbf{1}}_{Q_{ \pm}(K)} \otimes \widetilde{\mathbf{1}}_{T(K)}
$$

and suppose that μ and ν are positive measures on \mathcal{H} that are constant on tiles, i.e., $\mu \equiv \sum_{I \in \mathcal{D}} \mu_{I} \mathbf{1}_{T(I)}, \nu \equiv \sum_{I \in \mathcal{D}} \nu_{I} \mathbf{1}_{T(I)}$. Then

$$
\mathrm{U}(\mu \cdot): L_{c}^{2}(\mathcal{H} ; \mu) \rightarrow L_{c}^{2}(\mathcal{H} ; \nu)
$$

if and only if both

$$
\begin{aligned}
\left\|\mathrm{U}\left(\mu \mathbf{1}_{T(I)}\right)\right\|_{L_{c}^{2}(\mathcal{H} ; \nu)} & \leq C_{1}\left\|\mathbf{1}_{T(I)}\right\|_{L_{c}^{2}(\mathcal{H} ; \mu)}=\sqrt{\mu(T(I))}, \\
\left\|\mathbf{1}_{Q(I)} \mathrm{U}^{*}\left(\nu \mathbf{1}_{Q(I)}\right)\right\|_{L_{c}^{2}(\mathcal{H} ; \mu)} & \leq C_{2}\left\|\mathbf{1}_{Q(I)}\right\|_{L_{c}^{2}(\mathcal{H} ; \nu)}=\sqrt{\nu(Q(I))},
\end{aligned}
$$

hold for all $I \in \mathcal{D}$. Moreover, $\|\mathrm{U}\|_{L_{c}^{2}(\mathcal{H} ; \mu) \rightarrow L_{c}^{2}(\mathcal{H} ; \nu)} \approx C_{1}+C_{2}$.

An Open Question

Unfortunately, the methods described do not appear to work to handle type ($0,1,0,1$) compositions. However, the following question is of interest:

Question

For each $I \in \mathcal{D}$ determine function $F_{I}, B_{I} \in L^{2}$ of norm 1 such that $\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,1)}$ is bounded on L^{2} if and only if

$$
\begin{aligned}
& \left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,1)} F_{I}\right\|_{L^{2}} \leq C_{1} \quad \forall I \in \mathcal{D} \\
& \left\|\mathrm{P}_{d}^{(1,0)} \circ \mathrm{P}_{b}^{(1,0)} B_{I}\right\|_{L^{2}} \leq C_{2} \quad \forall I \in \mathcal{D} .
\end{aligned}
$$

Moreover, we will have

$$
\left\|\mathrm{P}_{b}^{(0,1)} \circ \mathrm{P}_{d}^{(0,1)}\right\|_{L^{2} \rightarrow L^{2}} \approx C_{1}+C_{2}
$$

Thank You!

