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Motivations

Sarason’s Conjecture

• H 2(D), the L2(T) closure of the analytic polynomials on D.
• P : L2(T)→ H 2(D) be the orthogonal projection.
• A Toeplitz operator with symbol ϕ is the following map from

H 2(D)→ H 2(D):
Tϕ(f ) ≡ P (ϕf ) .

• An important question raised by Sarason is the following:

Conjecture (Sarason Conjecture)
The composition of TϕTψ is bounded on H 2(D) if and only if

sup
z∈D

∫
T

1− |z|2∣∣∣1− zξ
∣∣∣2 |ϕ(ξ)|2 dm(ξ)


∫

T

1− |z|2∣∣∣1− zξ
∣∣∣2 |ψ(ξ)|2 dm(ξ)

 <∞

Unfortunately, this is not true! A counterexample was constructed
by Nazarov.
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Motivations

The Sarason Conjecture & Hilbert Transform

Question (Sarason Question (Revised Version))
Obtain necessary and sufficient (testable (?)) conditions so that one
can tell if TϕTψ is bounded on H 2(D) by evaluating these conditions.
Possible to rephrase this question as one about the two-weight
boundedness of the Hilbert transform.

• Let Mφ denote multiplication by φ: Mφf ≡ φf ;
• H 2(|φ|2) is the L2(T) closure of pφ where p is an analytic

polynomial;

H 2
TϕT

ψ−→ H 2

Mψ ↓ ↓ Mϕ

L2
(
T; |ψ|−2

) H−→ L2
(
T; |ϕ|2

)
Deep work by Nazarov, Treil, Volberg, and then subsequent work by
Lacey, Sawyer, Shen, Uriarte-Tuero allow for an answer in terms of the
Hilbert transform.
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Motivations Notation

Haar Paraproducts

• L2 ≡ L2(R);
• D is the standard grid of dyadic intervals on R;
• Define the Haar function h0

I and averaging function h1
I by

h0
I ≡ hI ≡

1√
|I |
(
−1I− + 1I+

)
I ∈ D

h1
I ≡

1
|I |1I I ∈ D.

h1
[0,1](x) h0

[0,1](x)
• {hI}I∈D is an orthonormal basis of L2.
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Motivations Notation

Haar Paraproducts

Definition (Haar Paraproducts)

Given a symbol sequence b = {bI}I∈D and a pair (α, β) ∈ {0, 1}2,
define the dyadic paraproduct acting on a function f by

P(α,β)
b f ≡

∑
I∈D

bI
〈
f , hβI

〉
L2

hαI .

The index (α, β) is referred to as the type of P(α,β)
b .

Question (Discrete Sarason Question)
For each choice of pairs (α, β), (ε, δ) ∈ {0, 1}2, obtain necessary and
sufficient conditions on symbols b and d so that∥∥∥P(α,β)

b ◦ P(ε,δ)
d

∥∥∥
L2→L2

<∞.
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Motivations Classical Characterizations

Internal Cancellations and Simple Characterizations

When there are internal zeros the behavior of P(α,0)
b ◦ P(0,β)

d reduces to
the behavior of P(α,β)

a for a special symbol a. For f , g ∈ L2, let
f ⊗ g : L2 → L2 be the map given by

f ⊗ g(h) ≡ f 〈g, h〉L2 .

Then:

P(α,0)
b ◦ P(0,β)

d =

∑
I∈D

bIhαI ⊗ hI

∑
J∈D

dJhJ ⊗ hβJ


=

∑
I∈D

bIdI hαI ⊗ hβI

= P(α,β)
b◦d .

Here b ◦ d is the Schur product of the symbols, i.e., (b ◦ d)I = bIdI .
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Motivations Classical Characterizations

Norms and Induced Sequences

For a sequence a = {aI}I∈D define the following quantities:

‖a‖`∞ ≡ sup
I∈D
|aI | ;

‖a‖CM ≡

√√√√sup
I∈D

1
|I |

∑
J⊂I
|aJ |2 .

Associate to {aI}I∈D two additional sequences indexed by D:

E(a) ≡

 1
|I |

∑
J⊂I

aJ


I∈D

;

Ŝ (a) ≡


〈∑

J∈D
aJh1

J , hI

〉
L2


I∈D

=

∑
J(I

aJ ĥ1
J (I )


I∈D

.
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Motivations Classical Characterizations

Classical Characterizations

Theorem (Characterizations of Type (0, 0), (0, 1), and (1, 0))

The following characterizations are true:∥∥∥P(0,0)
a

∥∥∥
L2→L2

= ‖a‖`∞ ;∥∥∥P(0,1)
a

∥∥∥
L2→L2

=
∥∥∥P(1,0)

a

∥∥∥
L2→L2

≈ ‖a‖CM .

P(1,1)
a = P(1,0)

Ŝ(a)
+ P(0,1)

Ŝ(a)
+ P(0,0)

E(a) .

Theorem (Characterization of Type (1, 1))

The operator norm
∥∥∥P(1,1)

a
∥∥∥

L2→L2
of P(1,1)

a on L2 satisfies
∥∥∥P(1,1)

a

∥∥∥
L2→L2

≈
∥∥∥Ŝ(a)

∥∥∥
CM

+ ‖E(a)‖`∞ .
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Motivations Classical Characterizations

Alternate Interpretations: Testing Conditions

It is easy to see for paraproducts of type (0, 0) that:∥∥∥P(0,0)
a

∥∥∥
L2→L2

= ‖a‖`∞

= sup
I∈D

∥∥∥P(0,0)
a hI

∥∥∥
L2
.

Moreover, ∥∥∥P(1,0)
a

∥∥∥
L2→L2

=
∥∥∥P(0,1)

a

∥∥∥
L2→L2

≈ ‖a‖CM

≈ sup
I∈D

∥∥∥P(0,1)
a hI

∥∥∥
L2
.

These observations suggest seeking a characterization for the other
compositions in terms of testing conditions on classes of functions.
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Motivations Classical Characterizations

Two Weight Inequalities in Harmonic Analysis

Given weights u and v on R and an operator T a problem one
frequently encounters in harmonic analysis is the following:

Question
Determine necessary and sufficient conditions on T, u, and v so that

T : L2 (R; u)→ L2 (R; v)

is bounded.

Meta-Theorem (Characterization of Boundedness via Testing)
The operator T : L2 (R; u)→ L2 (R; v) is bounded if and only if

‖T (u1Q)‖L2(v) . ‖1Q‖L2(u)

‖T ∗(v1Q)‖L2(u) . ‖1Q‖L2(v) .
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Motivations Main Results

Characterization of Type (0, 1, 1, 0)

For a sequence a, and interval I ∈ D let QIa ≡
∑

J⊂I aJhJ .

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition P(0,1)
b ◦ P(1,0)

d is bounded on L2 if and only if both∥∥∥QI P(0,1)
b P(1,0)

d

(
QId

)∥∥∥2

L2
≤ C 2

1 ‖QId‖2L2 ∀I ∈ D;∥∥∥QI P(0,1)
d P(1,0)

b

(
QI b

)∥∥∥2

L2
≤ C 2

2 ‖QI b‖2L2 ∀I ∈ D.

Moreover, the norm of P(0,1)
b ◦ P(1,0)

d on L2 satisfies∥∥∥P(0,1)
b ◦ P(1,0)

d

∥∥∥
L2→L2

≈ C1 + C2

where C1 and C2 are the best constants appearing above.
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Motivations Main Results

Rephrasing the Testing Conditions
We want to rephrase the testing conditions on QId and QI b:∥∥∥QI P(0,1)

b P(1,0)
d

(
QId

)∥∥∥2

L2
≤ C 2

1 ‖QId‖2L2 ∀I ∈ D;∥∥∥QI P(0,1)
d P(1,0)

b

(
QI b

)∥∥∥2

L2
≤ C 2

2 ‖QI b‖2L2 ∀I ∈ D.

It isn’t hard to see that these are equivalent to the following
inequalities on the sequences:

∑
J⊂I
|bJ |2

1
|J |2

∑
L⊂J
|dL|2

2

≤ C 2
1
∑
L⊂I
|dL|2 ∀I ∈ D;

∑
J⊂I
|dJ |2

1
|J |2

∑
L⊂J
|bL|2

2

≤ C 2
2
∑
L⊂I
|bL|2 ∀I ∈ D.
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Motivations Main Results

Characterization of Type (0, 1, 0, 0)

Theorem (E. Sawyer, S. Pott, M. Reguera-Rodriguez, BDW)

The composition P(0,1)
b ◦ P(0,0)

d is bounded on L2 if and only if both

|dI |2
∥∥∥P(0,1)

b hI
∥∥∥2

L2
≤ C 2

1 ∀I ∈ D;∥∥∥QI P(0,0)
d P(1,0)

b QI b
∥∥∥2

L2
≤ C 2

2 ‖QI b‖2L2 ∀I ∈ D.

Moreover, the norm of P(0,1)
b ◦ P(0,0)

d on L2 satisfies∥∥∥P(0,1)
b ◦ P(0,0)

d

∥∥∥
L2→L2

≈ C1 + C2

where C1 and C2 are the best constants appearing above.
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Motivations Main Results

Rephrasing Testing Conditions
Again, it is possible to recast the conditions:

|dI |2
∥∥∥P(0,1)

b hI
∥∥∥2

L2
≤ C 2

1 ∀I ∈ D;∥∥∥QI P(0,0)
d P(1,0)

b QI b
∥∥∥2

L2
≤ C 2

2 ‖QI b‖2L2 ∀I ∈ D

as expressions depending only on the sequences. In particular, these
are equivalent to the following inequalities:

|dI |2

|I |
∑
L(I
|bL|2 ≤ C 2

1 ∀I ∈ D;

∑
J⊂I

|dJ |2

|J |

 ∑
K⊂J+

|bK |2 −
∑

K⊂J−
|bK |2

2

≤ C 2
2
∑
L⊂I
|bL|2 ∀I ∈ D.
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Proofs of Main Results

Preliminaries
For I ∈ D set

T (I ) ≡ I ×
[ |I |

2 , |I |
]

(Carleson Tile);

Q (I ) ≡ I × [0, |I |] =
⋃

J⊂I
T (J ) (Carleson Square).

• The dyadic lattice D is in correspondence with the Carleson Tiles.
• Let H denote the upper half plane C+: H =

⋃
I∈D T (I ).

• For a non-negative function σ let L2(H;σ) denote the functions
that are square integrable with respect to σ dA, i.e,

‖f ‖2L2(H;σ) ≡
∫
H
|f (z)|2 σ(z) dA(z) <∞.

When σ ≡ 1, L2(H; 1) ≡ L2(H).
• For f ∈ L2 (H), let f̃ ≡ f

‖f ‖L2(H)
denote the normalized function.
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Proofs of Main Results

Functions Constant on Tiles
Let L2

c (H) ⊂ L2 (H) be the subspace of functions which are constant
on tiles. Namely, f : D → C

f =
∑
I∈D

fI 1T(I ).

Then

L2
c (H) ≡

f : D → C :
∑
I∈D
|f (I )|2 |I |2 <∞

 ;

‖f ‖2L2
c (H) ≡

1
2
∑
I∈D
|f (I )|2 |I |2 .

Easy to show:{
1̃T(I )

}
I∈D

is an orthonormal basis of L2
c (H) ;{

1̃Q(I )
}

I∈D
is an Riesz basis of L2

c (H) .
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Proofs of Main Results The Characterization of Type (0, 1, 0, 0)

The Gram Matrix of P(0,1)
b ◦ P(0,0)

d

Let GP(0,1)
b ◦P(0,0)

d
= [GI ,J ]I ,J∈D be the Gram matrix of the operator

P(0,1)
b ◦ P(0,0)

d relative to the Haar basis {hI}I∈D. A simple computation
shows its entries are:

GI ,J =
〈
P(0,1)

b ◦ P(0,0)
d hJ , hI

〉
L2

=
〈
P(0,0)

d hJ ,P(1,0)
b hI

〉
L2

=
〈
dJhJ , bIh1

I

〉
L2

= bIdJ ĥ1
I (J ) =


bIdJ

−1√
|J |

if I ⊂ J−
bIdJ

1√
|J |

if I ⊂ J+

0 if J ⊂ I or I ∩ J = ∅.

Idea: Construct T(0,1,0,0)
b,d : L2

c(H)→ L2
c(H) that has the same Gram

matrix as P(0,1)
b ◦ P(0,0)

d , but with respect to the basis
{

1̃T(I )
}

I∈D
.
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Proofs of Main Results The Characterization of Type (0, 1, 0, 0)

The Operator T(0,1,0,0)
b,d

Now consider the operator T(0,1,0,0)
b,d defined by

T(0,1,0,0)
b,d ≡M−1

b

∑
K∈D

1̃Q±(K) ⊗ 1̃T(K)

M 1
2
d .

Here
1Q±(K) ≡ −

∑
L⊂K−

1T(L) +
∑

L⊂K+

1T(L).

A straightforward computation shows∥∥∥1Q±(K)

∥∥∥
L2(H)

= |K |
2 ;

Mλ
a1Q±(K) = −

∑
L⊂K−

aL |L|λ 1T(L) +
∑

L⊂K+

aL |L|λ 1T(L).
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Proofs of Main Results The Characterization of Type (0, 1, 0, 0)

Connecting to a Two Weight Inequality
The inequality we wish to characterize is:∥∥∥∥M−1

b UM
1
2
d f
∥∥∥∥

L2
c (H)

=
∥∥∥T(0,1,0,0)

b,d f
∥∥∥

L2
c (H)

. ‖f ‖L2
c (H) .

Where the operator U on L2 (H) is defined by

U ≡
∑

K∈D
1̃Q±(K) ⊗ 1̃T(K).

One sees that the inequality to be characterized is equivalent to:

‖U (µg)‖L2
c (H;ν) . ‖g‖L2

c (H;µ) ,

where the weights µ and ν are given by

ν ≡
∑
I∈D
|bI |2 |I |−2 1T(I )

µ ≡
∑
I∈D
|dI |−2 |I |−1 1T(I ).
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Proofs of Main Results The Characterization of Type (0, 1, 0, 0)

Theorem (S. Pott, E. Sawyer, M. Reguera-Rodriguez, BDW)

Let
U ≡

∑
K∈D

1̃Q±(K) ⊗ 1̃T(K)

and suppose that µ and ν are positive measures on H that are constant
on tiles, i.e., µ ≡

∑
I∈D µI 1T(I ), ν ≡

∑
I∈D νI 1T(I ). Then

U (µ·) : L2
c (H;µ)→ L2

c (H; ν)

if and only if both∥∥∥U (µ1T(I )
)∥∥∥

L2
c (H;ν)

≤ C1
∥∥∥1T(I )

∥∥∥
L2

c (H;µ)
=
√
µ (T (I )),∥∥∥1Q(I )U∗

(
ν1Q(I )

)∥∥∥
L2

c (H;µ)
≤ C2

∥∥∥1Q(I )

∥∥∥
L2

c (H;ν)
=
√
ν (Q (I )),

hold for all I ∈ D. Moreover, ‖U‖L2
c (H;µ)→L2

c (H;ν) ≈ C1 + C2.
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Conclusion

An Open Question

Unfortunately, the methods described do not appear to work to handle
type (0, 1, 0, 1) compositions. However, the following question is of
interest:

Question
For each I ∈ D determine function FI ,BI ∈ L2 of norm 1 such that
P(0,1)

b ◦ P(0,1)
d is bounded on L2 if and only if∥∥∥P(0,1)

b ◦ P(0,1)
d FI

∥∥∥
L2
≤ C1 ∀I ∈ D;∥∥∥P(1,0)

d ◦ P(1,0)
b BI

∥∥∥
L2
≤ C2 ∀I ∈ D.

Moreover, we will have∥∥∥P(0,1)
b ◦ P(0,1)

d

∥∥∥
L2→L2

≈ C1 + C2.
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Conclusion Thanks

Thank You!
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