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Motivations for the Problem

Weighted Bergman Spaces on Bn

• Let Bn := {z ∈ Cn : |z| < 1}.
• For α > −1, we let

dvα(z) := cα (1− |z|2)α dv(z), with cα := Γ(n + α+ 1)
n! Γ(α+ 1)

.

The choice of cα gives that vα (Bn) = 1.
• For 1 < p <∞ the space Ap

α is the collection of holomorphic
functions on Bn such that

‖f ‖pAp
α

:=
∫

Bn
|f (z)|p dvα(z) <∞.

• For λ ∈ Bn let k(p,α)
λ (z) = (1−|λ|2)

n+1+α
q

(1−λz)n+1+α .

• A computation shows:
∥∥∥k(p,α)
λ

∥∥∥
Ap
α

≈ 1.
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Motivations for the Problem

Toeplitz Operators and the Toeplitz Algebra

• The projection of L2
α onto A2

α is given by the integral operator

Pα(f )(z) :=
∫

Bn

f (w)
(1− zw)n+1+α dvα(w).

• This operator is bounded from Lp
α to Ap

α when 1 < p <∞ and
−1 < α.

• Let Ma denote the operator of multiplication by the function a,
Ma(f ) := af . The Toeplitz operator with symbol a ∈ L∞ is the
operator given by

Ta := PαMa .

• It is immediate to see that ‖Ta‖L(Ap
α) . ‖a‖L∞ .

• More generally, for a measure µ we will define the operator

Tµf (z) :=
∫

Bn

f (w)
(1− wz)n+1+α dµ(w),

which will define an analytic function for all f ∈ H∞.
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Motivations for the Problem

Toeplitz Operators and the Toeplitz Algebra

• For symbols in L∞ we let Tp,α be the C ∗ subalgebra of L(Ap
α)

generated by Ta .
• An important class of operators in Tp,α are those that are finite

sums of finite products of Toeplitz operators.
Namely, for symbols ajk ∈ L∞ with 1 ≤ j ≤ J and 1 ≤ k ≤ K we
will need to study the operators:

J∑
j=1

K∏
k=1

Tajk

• Additionally,

Tp,α =


J∑

j=1

K∏
k=1

Tajk : ajk ∈ L∞ 1 ≤ j ≤ J 1 ≤ k ≤ K


L(Ap

α)
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Motivations for the Problem

Geometry of the Ball
For z ∈ Bn , ϕz will denote the automorpishm of Bn such that
ϕz(0) = z. The pseudohyperbolic and hyperbolic metrics are defined by

ρ(z,w) := |ϕz(w)| and β(z,w) := 1
2

log 1 + ρ(z,w)
1− ρ(z,w)

.

The hyperbolic disc centered at z of radius r is denoted by
D(z, r) := {w ∈ Bn : β(z,w) ≤ r} = {w ∈ Bn : ρ(z,w) ≤ tanh r}.

Lemma (Lattices on Bn)

Given r > 0, there is a family of Borel sets Dm ⊂ Bn and points
{wm}∞m=1 such that
(i) D

(
wm ,

r
4
)
⊂ Dm ⊂ D (wm , r) for all m;

(ii) Dk ∩Dl = ∅ if k 6= l;
(iii)

⋃
m Dm = Bn.
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Motivations for the Problem

Geometry of the Ball

Dyadic Tree on D
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Motivations for the Problem

Geometry of the Ball

Note that for these sets: If w ∈ Dm then (1− |w|2) ≈ (1− |wm |2) and
|1− zw| ≈ |1− zwm | uniformly in z ∈ Bn .

Lemma (Whitney Decompositions)

There is a positive integer N = N (n) such that for any σ > 0 there is a
covering of Bn by Borel sets {Bj} that satisfy:
(i) Bj ∩ Bk = ∅ if j 6= k;
(ii) Every point of Bn is contained in at most N sets

Ωσ(Bj) = {z : β(z ,Bj) ≤ σ};
(iii) There is a constant C (σ) > 0 such that diamβ Bj ≤ C (σ) for all j.

Idea of Proof: Via the Whitney Decomposition of the unit ball Bn ,
partition into cubes or hyperbolic balls. This then gives (i)
immediately. The remaining points are then well known geometric
facts.
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Motivations for the Problem

Geometry of the Ball

Whitney Decomposition of D
(Taken from Classical and Modern Fourier Analysis by Grafakos)
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Motivations for the Problem

Geometry of the Ball
Let σ > 0 and k a non-negative integer. Let {Bj} be the covering of
the ball from the previous Lemma with (k + 1)σ instead of σ.
For 0 ≤ i ≤ k and j ≥ 1 write

F0,j = Bj and Fi+1,j = {z : β(z,Fi,j) ≤ σ} .

Corollary

Let σ > 0 and k be a non-negative integer. For each 0 ≤ i ≤ k the
family of sets Fi = {Fi,j : j ≥ 1} forms a covering of Bn such that
(i) F0,j1 ∩ F0,j2 = ∅ if j1 6= j2;
(ii) F0,j ⊂ F1,j ⊂ · · · ⊂ Fk+1,j for all j;
(iii) β(Fi,j ,Fc

i+1,j) ≥ σ for all 0 ≤ i ≤ k and j ≥ 1;
(iv) Every point of Bn belongs to no more than N elements of Fi ;
(v) diamβ Fi,j ≤ C (k, σ) for all i, j.
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Motivations for the Problem

Carleson Measures for Ap
α

A measure µ on Bn is a Carleson measure for Ap
α if∫

Bn
|f (z)|p dµ(z) .

∫
Bn
|f (z)|p dvα(z) ∀f ∈ Ap

α.

Lemma (Characterizations of Ap
α Carleson Measures)

Suppose that 1 < p <∞ and α > −1. Let µ be a measure on Bn and
r > 0. The following quantities are equivalent, with constants that
depend on n, α and r:
(1) ‖µ‖CM := supz∈Bn

∫
Bn

(1−|z|2)n+1+α

|1−zw|2(n+1+α) dµ(w);

(2) ‖ıp‖ := inf
{

C :
(∫

Bn
|f (z)|p dµ(z)

) 1
p ≤ C

(∫
Bn
|f (z)|p dvα(z)

) 1
p
}

;

(3) ‖µ‖Geo := supz∈Bn
µ(D(z,r))

(1−|z|2)n+1+α ;

(4) ‖Tµ‖L(Ap
α).
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Motivations for the Problem

The Berezin Transform

For S ∈ L(Ap
α), we define the Berezin transform by

B(S)(z) :=
〈
Sk(p,α)

z , k(q,α)
z

〉
A2
α

.

• B : L(Ap
α)→ L∞(Bn):

|B(S)(z)| ≤ ‖S‖L(Ap
α)

∥∥∥k(p,α)
λ

∥∥∥
Ap
α

∥∥∥k(q,α)
λ

∥∥∥
Aq
α

≈ ‖S‖L(Ap
α) .

• If S is compact, then B(S)(z)→ 0 as |z| → 1:

|B(S)(z)| ≤
∥∥∥Sk(p,α)

λ

∥∥∥
Ap
α

∥∥∥k(q,α)
λ

∥∥∥
Aq
α

≈
∥∥∥Sk(p,α)

λ

∥∥∥
Ap
α

.

However, k(p,α)
λ ⇀ 0 as |z| → 1 and so

∥∥∥Sk(p,α)
λ

∥∥∥
Ap
α

→ 0.
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Motivations for the Problem

The Berezin Transform

• The Berezin transform is one-to-one: Enough to show that
B(S)(z) = 0⇒ S = 0.

Set F(z,w) =
〈
Sk(p,α)

z , k(q,α)
w

〉
A2
α

.

Then F(z, z) = 0 and F is analytic in the second variable and
anti-analytic in the first variable.

This implies that F is identically zero.

So we have that Sk(p,α)
z = 0 for all z ∈ Bn , or S = 0.

• B(S) is Lipschitz conitnuous with respect to the hyperbolic metric

|B(S)(z1)− B(S)(z2)| ≤
√

2 ‖S‖L(Ap
α) β(z1, z2)

• Range of B is not closed: B−1 : B(L(Ap
α))→ L(Ap

α) is not
bounded.
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Motivations for the Problem

Related Results

Theorem (Axler and Zheng, Indiana Univ. Math. J. 47 (1998))
Suppose that ajk ∈ L∞(D) with 1 ≤ j ≤ J and 1 ≤ k ≤ K. Let
S =

∑J
j=1

∏K
k=1 Tajk The following are equivalent:

(a) The operator S is compact on A2(D);
(b) B(S)(z)→ 0 as |z| → 1;
(c) ‖Skz‖A2

α
→ 0 as |z| → 1.

• The interesting implication is (b)⇒ (a);
• The same proof works in the case of the unit ball, but was done by

Raimondo.

Theorem (Engliš, Ark. Mat. 30 (1992))
Let 1 < p <∞ and α > −1. If S is a compact operator on Ap

α, then
S ∈ Tp,α.
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Motivations for the Problem

Main Question of Interest
From the previous Theorem and simple functional analysis we have
that if S is compact on Ap

α then

S ∈ Tp,α and B(S)(z)→ 0 as |z| → 1.

Question (Characterizing the Compacts)
If S ∈ Tp,α and B(S)(z)→ 0 as |z | → 1, then is S is compact?

Yes!

• Shown to be true by Suárez for Ap when 1 < p <∞ and α = 0.
• Extended to α > −1 by Suárez, Mitkovski and BDW using some

maximal ideal theory and appropriate modifications of the original
proof.

• Alternate proof obtained by Mitkovski and BDW, but removing
the maximal ideal theory.
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Main Results

Characterizations of Compactness and Essential Norm

Theorem (D. Suárez, M. Mitkovski and BDW)
Let 1 < p <∞ and α > −1 and S ∈ L(Ap

α). Then S is compact if and
only if S ∈ Tp,α and lim|z|→1 B(S)(z) = 0.

We can actually obtain much more precise information about the
essential norm of an operator. For S ∈ L(Ap

α) recall that

‖S‖e = inf
{
‖S −Q‖L(Ap

α) : Q is compact
}
.

We need to define other measures of the “size” of an operator
S ∈ L(Ap

α):

bS := sup
r>0

lim sup
|z|→1

∥∥∥M1D(z,r)S
∥∥∥
L(Ap

α,Lp
α)

cS := lim
r→1

∥∥∥M1Bn\rBn
S
∥∥∥
L(Ap

α,Lp
α)
.
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Main Results

Characterizations of Compactness and Essential Norm
Let r > 0 and let {wm} and Dm be the sets that form the lattice in Bn .
Define the measure

µr =
∑
m

vα(Dm)δwm ≈
∑
m

(1− |wm |2)α+n+1δwm .

It is well know that µr is a Ap
α Carleson measure, so Tµr : Ap

α → Ap
α is

bounded.
Lemma
Tµr → Id on L(Ap

α) when r → 0.

Let r > 0 be chosen so that ‖Tµr − Id‖L(Ap
α) <

1
4 , and µ := µr . Then

set
aS(ρ) := lim sup

|z|→1
sup

{
‖Sf ‖Ap

α
: f ∈ Tµ1D(z,ρ)(A

p
α), ‖f ‖Ap

α
≤ 1

}
and define

aS := lim
ρ→1

aS(ρ).
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Main Results

Characterizations of Compactness and Essential Norm

Theorem (D. Suárez, M. Mitkovski and BDW)
Let 1 < p <∞ and α > −1 and let S ∈ Tp,α. Then there exists
constants depending only on n, p, and α such that:

aS ≈ bS ≈ cS ≈ ‖S‖e .

For the automorphism ϕz such that ϕz(0) = z define the map

U (p,α)
z f (w) := f (ϕz(w)) (1− |z|2)

n+1+α
p

(1− wz)
2(n+1+α)

p

.

A standard change of variable argument and computation gives that∥∥∥U (p,α)
z f

∥∥∥
Ap
α

= ‖f ‖Ap
α
∀f ∈ Ap

α.
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Main Results

Characterizations of Compactness and Essential Norm

For z ∈ Bn and S ∈ L(Ap
α) we then define the map

Sz := U (p,α)
z S(U (q,α)

z )∗.

One should think of the map Sz in the following way. This is an
operator on Ap

α and so it first acts as “translation” in Bn , then the
action of S , then “translation” back.

Theorem (D. Suárez, M. Mitkovski and BDW)
Let α > −1 and 1 < p <∞ and S ∈ Tp,α. Then

‖S‖e ≈ sup
‖f ‖Ap

α
=1

lim sup
|z|→1

‖Sz f ‖Ap
α
.
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Sketch of Proofs Main Ingredients

Connecting the Geometry and Operator Theory

Lemma (D. Suárez, M. Mitkovski and BDW)

Let S ∈ Tp,α, µ a Carleson measure and ε > 0. Then there are Borel
sets Fj ⊂ Gj ⊂ Bn such that
(i) Bn = ∪Fj ;
(ii) Fj ∩ Fk = ∅ if j 6= k;
(iii) each point of Bn lies in no more than N (n) of the sets Gj ;
(iv) diamβ Gj ≤ d(p,S , ε)
and ∥∥∥∥∥∥STµ −

∞∑
j=1

M1Fj
ST1Gjµ

∥∥∥∥∥∥
L(Ap

α,Lp
α)

< ε.
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Sketch of Proofs Main Ingredients

A Uniform Algebra and its Maximal Ideal Space

• Let A denote the bounded functions that are uniformly continuous
from the metric space (Bn , ρ) into the metric space (C, |·|).

• Associate to A its maximal ideal space MA which is the set of all
non-zero multiplicative linear functionals from A to C.

• Since A is a C ∗ algebra we have that Bn is dense in MA.
• The Toeplitz operators associated to symbols in A are useful to

study the Toeplitz algebra Tp,α.

Theorem (D. Suárez, M. Mitkovski and BDW)

The Toeplitz algebra Tp,α is equal to the closed algebra generated by
{Ta : a ∈ A}.
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Sketch of Proofs Main Ingredients

A Uniform Algebra and its Maximal Ideal Space

• For an element x ∈ MA \ Bn choose a net zω → x.
• Form Szω and look at the limit operator obtained when zω → x,

denote it by Sx .

Lemma (D. Suárez, M. Mitkovski and BDW)

Let S ∈ L(Ap
α). Then B(S)(z)→ 0 as |z| → 1 if and only if Sx = 0 for

all x ∈ MA \ Bn.

We can extend this to compute the essential norm of an operator S in
terms of Sx where x ∈ MA \ Bn .

Theorem (D. Suárez, M. Mitkovski and BDW)

Let S ∈ Tp,α. Then there exists a constant C (p, α,n) such that

sup
x∈MA\Bn

‖Sx‖L(Ap
α) ≈ ‖S‖e .
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Sketch of Proofs Main Ingredients

Proof of Main Theorem

Theorem (D. Suárez, M. Mitkovski and BDW)
Let 1 < p <∞ and α > −1 and S ∈ L(Ap

α). Then S is compact if and
only if S ∈ Tp,α and lim|z|→1 B(S)(z) = 0.

Proof.
⇒: If S is compact that B(S)(z)→ 0 as |z | → 1 and S ∈ Tp,α.
⇐: If S ∈ Tp,α, then we have

sup
x∈MA\Bn

‖Sx‖L(Ap
α) ≈ ‖S‖e .

If B(S)(z)→ 0 as |z | → 1, then Sx = 0 for all x ∈ MA \ Bn .
This gives ‖S‖e = 0 or equivalently S is compact.
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Sketch of Proofs Main Ingredients

The Hilbert Space Case

Theorem (D. Suárez, M. Mitkovski and BDW)
For S ∈ T2,α we have

‖S‖e = sup
x∈MA\Bn

‖Sx‖L(A2
α)

and
sup

x∈MA\Bn

r(Sx) ≤ lim
k→∞

(
sup

x∈MA\Bn

∥∥∥Sk
x

∥∥∥ 1
k

L(A2
α)

)
= re(S)

with equality when S is essentially normal.

Theorem (D. Suárez, M. Mitkovski and BDW)
Let α > −1 and S ∈ T2,α. Then

‖S‖e = sup
‖f ‖A2

α
=1

lim sup
|z|→1

‖Sz f ‖A2
α
.
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Sketch of Proofs Main Ingredients

The Hilbert Space Case

Theorem (D. Suárez, M. Mitkovski and BDW)
Let S ∈ T2,α. The following are equivalent:
(1) λ /∈ σe(S);
(2)

λ /∈
⋃

x∈MA\Bn

σ(Sx) and sup
x∈MA\Bn

∥∥∥(Sx − λI )−1
∥∥∥
L(A2

α)
<∞;

(3) There is a number t > 0 depending only on λ such that

‖(Sx − λI )f ‖A2
α
≥ t ‖f ‖A2

α
and

∥∥∥(S∗x − λI )f
∥∥∥

A2
α

≥ t ‖f ‖A2
α

for all f ∈ A2
α and x ∈ MA \ Bn.
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Other Directions and Open Questions

Other Directions
The Fock space F is the collection of holomorphic functions f on Cn

such that
‖f ‖2F :=

∫
Cn
|f (z)|2 e−π|z|

2
dv(z) <∞.

This is a reproducing kernel Hilbert space with kλ(z) = eπzλ as kernel.
Similar results are true for the Fock Space.

Theorem (W. Bauer and J. Isralowitz)
Let S ∈ L(F). Then S is compact if and only if S ∈ T2 and
lim|z|→∞ B(S)(z) = 0.

Corollary (W. Bauer and J. Isralowitz)
Let S ∈ T2, then

‖S‖e ≈ sup
‖f ‖F=1

lim sup
|z|→∞

‖Sz f ‖F .
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Other Directions and Open Questions

Other Directions
Let Ω be a bounded symmetric domain in Cn . These are Hermitian
symmetric spaces with a complete Riemannian metric given by the
Bergman metric. For each a ∈ Ω there is a biholomorphic
automorphism ϕa that interchanges 0 and a.

Let A2(Ω) denote the Bergman space of analytic functions on Ω that
are square integrable with respect to volume measure. This space has a
reproducing kernel Ka , and relates to the automorphisms by

Kw(z) = Kϕ(w)(ϕ(z))Jcϕ(w)Jcϕ(w)

Proposition (M. Mitkovski and BDW)
Let S ∈ T2, then

‖S‖e ≈ sup
‖f ‖A2(Ω)=1

lim sup
z→∂Ω

‖Sz f ‖A2(Ω) .
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Other Directions and Open Questions

Open Questions
If S ∈ L(A2

α) then B(S) ∈ L∞. Similarly, if S ∈ K(A2
α) then B(S)→ 0

as |z | → 1. And, even better, S ∈ K(A2
α) if and only if S ∈ T2,α and

B(S)→ 0 as |z| → 1.

Question
Can we characterize the Schatten class operators on A2

α as those that
belong to the Toeplitz algebra T2,α and an integrability condition on the
Berezin transform B(S)(z)?

One can show that if S ∈ Sp then

‖B(S)‖Lp(Bn ;λn) :=
(∫

Bn
|B(S)(z)|p dλn(z)

) 1
p

. ‖S‖Sp
.

Proposition (M. Mitkovski and BDW)
Let 1 < p <∞ and α > −1. If S ∈ Sp, then B(S) ∈ Lp(Bn ;λn) and
S ∈ T2,α.
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Conclusion

Thank You!
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