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Motivations _

Let D" :={z€C": |z <1, [=1,...,n}.

We let :
dv(z) :== ﬁdA(zl) - dA(z).

The space A?(D") is the collection of holomorphic functions on D"
such that

||f||§12(]n)n) — /]D)" 1f(2)]? dv(z) < oc.

n (A=A (IR S
For A € D" let kyx(2) := 1L, ((11_|§l;|l)g and K(2) := [1i% (1—51121)2'

Mobius maps: For any z € D" there exists a ¢, that interchanges
0 and z.
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Motivations _

o Let B, :={2€C":|z| < 1}.

o For a > —1, we let

Fn+a+1)

. i 2\« 3 —
dva(2) = ca (1 = 25)% dv(z), with ca = Z /e

The choice of ¢, gives that v, (B,) = 1.

« The space A%(B,,) is the collection of holomorphic functions on B,
such that

||f||?43(]3n) ::/]B 1f(2))? dua(z) < co.

n+l4+a
_a=pp) — 1
T (I-ap)ntite and K)(z) := (1—xz)ntito”
» Mobius maps: For any z € B, there exists a ¢, that interchanges 0
and z.

- For A € By, let k% (2) :
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Motivations _

« For B> 0 let Fg((C”) be the collection of holomorphic functions on
C" for which

2
lg(cny = 5 [, (I P du(z) < oo,

o For z € C", let K? (w) := €% and k2 (w) := Pl 1

» Mobius maps: For any z € C" there exists ¢, that interchanges 0
and z;
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Motivations _

A1 Let Q be a domain (connected open set) in C™ containing the
origin. Assume that for each z € (2, there exists an involution
v, € Aut(Q) satisfying ¢,(0) = z.

A.2 There exists a metric d on ) which is quasi-invariant under ¢,

d(u, v) ~ d(p(u), p,(v)) Yu,v € .

A3 There exists a finite Borel measure o on (2. Let the norm and
inner product on L?(2; do) be denoted by || - | and (-, -).
B(2) c L?(£; do) is the space of square integrable holomorphic
functions on Q. B(€) is a RKHS with K, and k, the reproducing
and the normalized reproducing kernel in B(£2).
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Motivations _

A4 The measure dA(z) := | K,||* do(z) is quasi-invariant under all ¢,
and is a doubling measure;
A(E) Aw:(E)) EC

AD(z,2r)) S AMD(z,r)) VzeQ,r>0.
A5 For all z,w € Q
|(kz, kw)

1= [

A .6 Rudin-Forelli Estimates: There exists k with 0 < x < 2 such that
r+s
(K2 Kuw)l| 2
o [ K| | Kwll”
for all » > k > s > 0 or the above holds for all » = s > 0. In the

latter case we will say that k = 0.
A7 The following limit holds: lim g, )00 || Kz|| = 00

dA\(w) < C = C(r,s) < oo, Yz€
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Motivations _

Al p,(w) are simply the Mébius maps on Q = B,,;

A2 d(u,v) is the hyperbolic metric on By, d(u,v) := %logw'

1—|pu(v)]’
A3 do is normalized Lebesque measure on B,. A%(B,) C L?(B,; do).
_ 2 n+1
A4 dX(2) = i

A5 Well-known “magic” identity:

(L= 121~ )

)

1- |Soz(w)|2 =

11— zw|?

2n .
n+1’

AT limyy 1 || Kz g2 = +o00, or b, — 0 as [2] — 1.
B. D. Wick (Georgia Tech) | Essential Norm on Bergman Spaces I RAGTOANINE/ 57"

A.6 Standard computation. Here k =



Motivations _

Example (Fock Space on €")

Al Q=C" and ¢,(w) :== z — w for each z € C";

A2 d(u,v) = |u—v| is the Euclidean metric on C";

A3 do(2) = Le I du(z). F2(CM) C L3(C"; do). K, (w) := *% and
k,(w) = ewi_%lzﬁ;

A4 dX(z) == dv(z);

A5 Simple computation:

2 2 — 1 2
o bz~ L[wl4Re(zw) _ ,—ilz—uf.
)

A.6 Standard computation integrating Gaussians. Here k = 0;

A7 lim|z|ﬁ+oo ||KZ||F2 = +o0.
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Motivations _

For S € L(B(f2)) and z € Q we define the Berezin transform by
B(8)(z) = (Skz, k) gy -
« B:L(B(Q)) = L>®(Q):

1B(S)(2)] < 1Sl sy &=l 8y 122l 3y = 1151l () -

« If S is compact, then B(S)(z) — 0 as z — 0%
|B(S)(2)| < [ISk:| 5 1%2 |50y = 15Kzl () -

However, k, — 0 as z — 02 and so ||Sk:||g) — 0.
« B(S) is Lipschitz continuous with respect to the metric d

|B(S)(21) — B(S)(22)| < 1Sl 280y @(21, 22).
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Motivations _

« The projection of L?(£2; do) onto B(f2) is given by the integral

operator
= / F(w) Kulz) do(w).
9)

» Let M, denote the operator of multiplication by the function a,
M, (f) := af. The Toeplitz operator with symbol a € L>(£2) is the
operator given by

T, := PM,.

- It is immediate to see that || Tullz(5(0)) < llall =)

« More generally, for a measure p we will define the operator

/ f(w) Ku(z) dp(w),
which will define an analytic function.
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Motivations _

« For symbols in L%°(Q) we let T (q) be the C* subalgebra of
L(B(2)) generated by T,.

 An important class of operators in Tre(q) are those that are finite
sums of finite products of Toeplitz operators.
Namely, for symbols ay, € L*(Q) with 1 <j < Jand 1<k < K
we will need to study the operators:

K
I1 7.,

J
=1 k=1

J

Can we connect the behavior of the compact operators on B(Q2), the
Berezin transform, and the Toeplitz algebra?
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Motivations _

Suppose that ay, € L°(D) with 1 <j< J and1 <k < K. Let
g = Z}-le Hszl Ta; The following are equivalent:

(a) The operator S is compact on A%(D);

(b) B(S)(z) = 0 as |z| = 1;

(c) [|9k:|l g2y — 0 as || — 1.

If S is a compact operator on A%(B,,), then S € Troo(B,)- True more
generally for a domain Q C C".
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Motivations _

Let a > —1 and S € L(A%(B,)). Then S is compact if and only if
S € Treom,) and lim, 58, B(S)(2) = 0.

We can actually obtain much more precise information about the
essential norm of an operator. For S € £(A2(B,,)) recall that

IS, == inf{||S — Q"ﬁ(Ai(an)) 1 Qs compact} :

We need to define other measures of the “size” of an operator

S € L(A2(By)):

. 2
as = ngm Sup{HSfHA2 f € Tuipy (Aa): Ifllaz < 1}
bg := suplimsup || M; S ;
s o Hamsf H LoGan) Hz(Aﬁ(Bn),La(Bn))
s = Ml“n\ﬂ“SHﬁ(Aa(Bm,La(Bn))‘
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Motivations _

Let « > —1 and let S € Tpeom,)- Then there exists constants depending
only on n and « such that:

asg~bg~cg~|S],.

For the automorphism ¢, define the map U flw):=f (@Z(w))kza)(w)
For z € B, and S € L(A2(B,,)) we then define the map

.= U5 (U)"

Let a > —1 and S € Tpeo(w,)- Then

[S]le = sup  limsup ||S:f| 42 s, -

11l a2 ,y=1 2—OBn
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Motivations _

Let S € L(A%2(D"™)). Then S is compact if and only if S € TLoo(pn) and
lim, ,apn B(S)(z) = 0.

Let S € Tpoopny- Then there exists constants depending only on n such
that:

a5%55%C5%||S“6.

Let S € Troo(pry, then

IS|lc~ sup  limsup [|S.f| g2(pry -
Ifll g2 (pmy =1 z—0D"
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Motivations

Let S € E(Fg( ")). Then S is compact if and only if S € Treo(cny and
11H1|z|—>oo B(S)( ) 0.

Let S € Tpoo(cny- Then there exists constants depending only on n and
B such that:

as~bg~cg~|S],.

Let S € Tpoo(cny, then

|Sll,~  sup hmsup||SszF2 () -

111z cny=1 Iel=>o0
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Main Results _

For each z € Q we define an adapted translation operator U, on B((2)
by

Uef(w) := fpz(w))kz(w).

Easy to show || U.f|| ~ ||f|| with implied constants independent of z.
For any given operator T on B(2) and z € Q we define T, := U, TU}.

Let T : B(2) — B(Q) be a linear operator defined a priori only on the
linear span of the normalized reproducing kernels of B(2). Define T*
on the same set by duality. Let k be the constant from A.6. If

sup || Uz Tk 1000y < 00 and  sup || Uz T k|| o0, 40y < 00
z€Q z€Q

for some p > =5 then T is bounded on B().
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Main Results _

P
172 <[] [ 1, TR ) do(w)| do(a)

Define Rf(z) := [o (T K, Ky)| f(w)do(w). It is enough to show that
this operator is bounded on L?(€); do). One then shows:

[ R w) 1Kl do(w) S 5up 10T Rull ooy 1Kl
Q 2€Q

| RGw) K] do(z) S sup | U Thell a1 ull
Q z€Q

Here choose a € (%, %1_—2: ) such that ¢ (a — %) < k. The condition

p > g:—: guarantees « exists. Schur’s Test then shows R, and hence T'
is bounded.
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Main Results _

If there exists p > —” such that

sup 9(2)|” [ 1f(=(u))}” do(u) < oo

sup ()7 | la(es(u))” do(w) < oo,
then the operator Ty Ty is bounded on B(S2).

« Related to a famous conjecture of Sarason about the boundedness
of the product T T; on A?(D):

sup [ 1 eau)? dA(w) [ lo(ea(w))? dA(w) < o0
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Main Results _

If kK > 0 and T, is a Toeplitz operator whose symbol u for some
K

4— .
p > 5= satisfies

sup [ Ju(i.(w))” do(w) < oo,
z€€)

then T, is bounded on B(2).

If k >0 and HJ; is a Hankel operator whose symbol f satisfies

sup [ 1f(p2(w)) = SN do(w) <,

Z2€Q

for some p > 2 5 then Hy is bounded.
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Main Results _

Let T : B(2) — B(R2) be a linear operator and k be the constant from
A.6. If

SUP”U Tkl o (9;40) < 00 and SgPHU T k2|l o0y < 0©5
z

for some p > , then

(@) | Te =~ Su10||f||§1 im sup 4,0y 00 | T2f 1| -
(b) If limg(, 0)—oc | Tk|| = O then T must be compact.

Let B(Q2) be Bergman-type space for which x> 0. If T is in the
Toeplitz algebra T (q) then || T|le = sup)s<1 im sup g, 0)—o0 [| T=f 1| -
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Main Results _

There exists an integer N > 0 such that for any r > 0 there is a
covering F, = {F;} of Q by disjoint Borel sets satisfying
(1) every point of Q belongs to at most N of the sets
G ={2€Q:d(2, F;) <r};
(2) diamg F; < 2r for every j.

Let (X, d) be a separable metric space and r > 0. There is a
denumerable set of points {z;} and Borel subsets {Q;} of X that satisfy

(2) @NQy =10 forj#j;
(3) D(zj,r) C Q; C D(gj,2r).
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Main Results _

Let T : B(Q) — B(Q) be a linear operator and k be the constant from
A.6. If

sup ” U TkZHLP(Q;dU) < oo and sup ” U T*kZHLP(Q;da) < 0
2€Q 2€Q

for some p > ‘21:—’;, then for every e > 0 there exists r > 0 such that for
the covering F, = {F}}

< €.

TP -} M, TPMi
! L(B()

Allows us to obtain compact operators that approximate TP in norm.
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Main Results _

Since lim g, 0)—so0 [|A2f| = 0 for every compact operator A we obtain
that

sup limsup || T.f]| < sup limsup [[(T — A).f]| S || T — 4.
IF1<1 d(2,0)—oc0 IfI<1 d(2,0)—o0

But, since A is arbitrary this immediately implies

sup limsup || Tof[| S (| Tle-
IfII<1 d(z,0)—o0
For the other direction:
* Tl = TPl
« Using the approximation result it suffices to show

lim sup Z My, TPM, S sup limsup || Tof(| £ (50
m—yoo || =7 L(B(Q),L2(9:do)) IfII<1 d(2,0)—00
« One then mimics the proofs for D", B,, or C" (since they are all
the same proof!).
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The daydreams of cat herders

(Modified from the Original Dr. Fun Comic)

Thanks to Jaydeb and Raja for Organizing the Workshop!
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