Carleson Measures for Besov-Sobolev Spaces and
Non-Homogeneous Harmonic Analysis

Brett D. Wick

Georgia Institute of Technology
School of Mathematics

Southeastern Analysis Meeting
University of Florida
March 19, 2011

B. D. Wick (Georgia Tech) Carleson Measures & Besov-Sobolev Spaces 1/32



This talk is based on joint work with:

Alexander Volberg
Michigan State University
USA

B. D. Wick (Georgia Tech) Carleson Measures & Besov-Sobolev Spaces 2/32



Talk Outline

Talk Outline

@ Motivation of the Problem

e Besov-Sobolev Spaces of analytic functions on B,
o Carleson Measures for Besov-Sobolev Spaces

e Connections to Non-Homogeneous Harmonic Analysis

@ Main Results and Sketch of Proof

o T(1)-Theorem for Bergman-type operators

o Characterization of Carleson measures for Besov-Sobolev Spaces
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Motivations for the Problem Besov-Sobolev Spaces

Besov-Sobolev Spaces

@ The space B (B,) is the collection of holomorphic functions f on the
unit ball B, := {z € C" : |z| < 1} such that

(1 . |z|2> M (m) (2) i dAp (z)} 2 < 00,

m—1
(k) (o)
{;}‘f 0), +/Bn

n—1
where d\, ( |z| ) dV (z) is the invariant measure on
B, and m + o> 3.

@ Various choices of o give important examples of classical function
spaces:
e 0 = 0: Corresponds to the Dirichlet Space;

0o o= %: Drury-Arveson Hardy Space;
o o0 = 7: Classical Hardy Space;
e 0 > 7: Bergman Spaces.
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Motivations for the Problem Besov-Sobolev Spaces

Besov-Sobolev Spaces

@ The spaces BJ(B,) are examples of reproducing kernel Hilbert spaces.

@ Namely, for each point A € B, there exists a function k{ € BS(B,)
such that

f(A) = (f, kX) By (B.)

@ A computation shows that the kernel function k§(z) is given by:

1

(1- Xz)2”

k() =

1
e o = 3: Drury-Arveson Hardy Space; ki (z) = 1_—%2
. i 3 — 1
o o = 5 Classical Hardy Space; k3 (z) = A
1. B 1
o 0 = :L: Bergman Space; k2 (z) = e
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Motivations for the Problem Carleson Measures for Besov-Sobolev Spaces

Carleson Measures for Besov-Sobolev Spaces

Definition (Carleson Measures for BS(B,))

A non-negative Borel measure p is a BS(B,)-Carleson measure if

[ 1f@)Pdu@) < Co0Nfgqs,) ¥ € BS(B).

Carleson measures play an important role in both the function theory of the
space and more generally play a predominant role in harmonic analysis:

@ Interpolating Sequences;
o Characterization of Multipliers for spaces of function;
@ Corona Theorems;

@ Paraproducts, Commutators, Hankel Operators;
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Motivations for the Problem Carleson Measures for Besov-Sobolev Spaces

Carleson Measures for Besov-Sobolev Spaces

Give a ‘geometric’ characterization of Carleson measures for the
Besov-Sobolev spaces B2(B,,).

Testing on the reproducing kernel k§ we always have a necessary
geometric condition for the measure p to be Carleson:

pw(T(Br(£) <r*® VYE€dB,, r>0

When o > 7 then this necessary condition is also sufficient.
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Motivations for the Problem Carleson Measures for Besov-Sobolev Spaces

Carleson Measures for Besov-Sobolev Spaces

When 0 < o < % then a geometric characterization of Carleson measures
is known:
@ If n =1, the results can be expressed in terms of capacity conditions.
More precisely,

w(T(Q2)) < Cap, (2) VopenQ C T.

See for example Stegenga, Maz'ya, Verbitsky, Carleson.
@ If n > 1 there are two different characterizations of Carleson measures
for B (B,):
o One method via integration operators on trees (dyadic structures on
the ball B,) by Arcozzi, Rochberg and Sawyer.
e One method via “T(1)" conditions by E. Tchoundja.

Question (Main Problem: Characterization in the Difficult Range)

Characterize the Carleson measures when % <o < g
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Motivations for the Problem Carleson Measures for Besov-Sobolev Spaces

Operator Theoretic Characterization of Carleson Measures

The following observations hold in an arbitrary Hilbert space with a
reproducing kernel.

@ Let J be a Hilbert space of functions on a domain X with
reproducing kernel function ji, i.e.,

F(x) = (F. i)y VFed.

@ A measure i is Carleson exactly if the inclusion map ¢ from J to
L?(X; i) is bounded, or

[ 1FCRdu(2) < Cr)lfI-

We can give a characterization of Carleson measures for the space 7 in
terms of information about the boundedness of a certain linear operator
related to the reproducing kernel j.
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Motivations for the Problem Carleson Measures for Besov-Sobolev Spaces

Operator Theoretic Characterization of Carleson Measures

Proposition (Arcozzi, Rochberg, Sawyer)

A measure p is a J-Carleson measure if and only if the linear map

(2) = T (@) = [ Rei(2)(x)dn(x)

is bounded on L%(X; ).

When we apply this proposition to the spaces BJ (B,) this suggests that
we study the operator T, 2, : L?(Bp; 1) — L?(Bp; u1) given by

2ol = [ Re (e ) Fw)du(w

n

and find some conditions that will let us determine when it is bounded.
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Motivations for the Problem Connections with Non-Homogeneous Harmonic Analysis

Calderén-Zygmund Operators

A function k(x,y) : RY x RY — C will be called a Calderén-Zygmund
kernel if it satisfies the following estimates:

1
k(% ¥)| S =y Vx,y € RY,

If |x — x'| < |x — y| then
x = x|
k(ysx) = k(y, x")| + |k(x, y) — k(x 7)’)\NW

provided that, with some (fixed) 0 < 7 < 1. Given the kernel, we define
the operator by
/ k(x,y)f

Then for 1 < p<oo T : LP(R") — LP(R").
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Motivations for the Problem

Connections to T(1)-Theorem

Guessing the Characterization?

Connections with Non-Homogeneous Harmonic Analysis

Theorem (David and Journé)

If T is a Calderén-Zygmund operator then T : L2(R") — L?(R") if and
only if T(1), T*(1) € BMO(R") and T is weak bounded.

The condition T(1) € BMO(R") can be phrased in a more geometric way:

Lemma

Suppose that T is a Calderén-Zygmund operator. The following are
equivalent:

(i) T(1) € BMO(R"),
(i) For all @ C R"

/Q I Txo(x)2dx < |Ql-
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Motivations for the Problem Connections with Non-Homogeneous Harmonic Analysis

Calder6n—Zygmund Estimates for T, o,

If we define

Azw) = | 17— 1wl + - 25| © zweB,\ {0}

|z| + |w| : otherwise.
Then A is a pseudo-metric and makes the ball into a space of
homogeneous type.
A computation demonstrates that the kernel of T, >, satisfies the
following estimates:
1
|Kao (2, W)| S Az, W) Vz,w € Bp;

If A(¢, w) < 3A(z, w) then
A(G, w)'/?

|K2o (¢, W) — Koo (z, w)| S Az, W
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Motivations for the Problem Connections with Non-Homogeneous Harmonic Analysis

Calderén-Zygmund Estimates for T, 2,

@ These estimates on Ky, (z, w) say that it is a Calderén-Zygmund
kernel of order 20 with respect to the metric A.

o Unfortunately, we can't apply the standard T(1) technology (adapted
to a space of homogeneous type) to study the operators T, 5,. We
would need the estimates of order n instead of 20.
@ However, the measures we want to study (the Carleson measures for
the space) satisfy the growth estimate

u(T(Br)) S r*e

and this is exactly the issue that will save us!

@ This places us in the setting of non-homogeneous harmonic analysis as
developed by Nazarov, Treil and Volberg. We have an operator with a
Calderén-Zygmund kernel satisfying estimates of order 20, a measure
p of order 20, and are interested in L?(B,; 1) — L?(B,; ) bounds.
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Motivations for the Problem Connections with Non-Homogeneous Harmonic Analysis

Euclidean Variant of the Question

There is a natural extension of these questions/ideas to the Euclidean
setting RY.

More precisely, for m < d we are interested in Calderén-Zygmund kernels
that satisfy the following estimates:

1
qu.y 5177
K(e)| S

and | |
x —x'|T
k() = kx| + ko) = K S 17

provided that [x — x'| < J|x — y|, with some (fixed) 0 < 7 < 1.
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Motivations for the Problem Connections with Non-Homogeneous Harmonic Analysis

Euclidean Variant of the Question

Additionally the kernels will have the following property

1
max(d(x)™, d(y)™)’
where d(x) := dist(x,RY \ H) and H being an open set in RY.
Key Example: Let H = By, the unit ball in RY and

1
=T

A Calderén-Zygmund kernel k on a closed X C RY if k(x,y) is defined

only on X x X and the previous properties of k are satisfied whenever
x,x',y e X.

k(% ¥)] <

We say that a L?(R?; ;1) bounded operator is a Calderén-Zygmund
operator with kernel k if,

Tumf(x) = /Rd k(x,y)f(y)dply) Vx ¢ suppf .
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Main Results and Sketch of Proof Main Results

Main Results
T(1)-Theorem for Bergman-Type Operators

Theorem (T(1)-Theorem for Bergman-Type Operators, Volberg,
BDW (Amer. J. Math., to appear))

Let k(x,y) be a Calderén-Zygmund kernel of order m on X C RY, m < d
with Calderén-Zygmund constants Ccz and 7. Let p be a probability
measure with compact support in X and all balls such that u(B,(x)) > r™
lie in an open set H. Let also

1
max(d(x)™, d(y)™)’

k(x, )| <
where d(x) := dist(x,RY \ H). Finally, suppose also that:

1T mx@ll2 ey < ARR) s I T mx @l 2@y < An(Q)-

Then HTu,m”L2(Rd;u)—>L2(Rd;u) < C(A,m,d,T).
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Main Results and Sketch of Proof Main Results

Remarks about T(1)-Theorem for Bergman-Type

Operators

This theorem gives an extension of the non-homogeneous harmonic
analysis of Nazarov, Treil and Volberg to “Bergman-type"” operators.

@ The balls for which we have p(B(x,r)) > r™ are called “non-Ahlfors
balls”.

e Non-Ahlfors balls are enemies, their presence make the estimate of
Calderén-Zygmund operator basically impossible.

e The key hypothesis is that we can capture all the non-Ahlfors balls in
some open set H.

e This is just a restatement of the Carleson measure condition in this
context.

@ To handle this difficulty we suppose that our Calderén-Zygmund
kernels have an additional estimate in terms of the behavior of the
distance to the complement of H (namely that they are
Bergman-type kernels).
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Main Results and Sketch of Proof Main Results

Main Results

Characterization of Carleson Measures for Bf,(B,,)

Theorem (Characterization of Carleson Measures for Besov-Sobolev
Spaces, Volberg, BDW Amer. J. Math. to appear))

Let i be a positive Borel measure in B,. Then the following conditions are
equivalent:

(a) p is a B§(B,)-Carleson measure;
(b) Tyuoo: L2(Bp; i) — L2(Bn; p) is bounded;
(c) There is a constant C such that

(i) I Tu2oxellfa,,y < € u(Q) for all A-cubes Q;
(i) w(Ba(x,r)) < Cr? for all balls Ba(x, r) that intersect C" \ B,,.

Above, the sets Ba are balls measured with respect to the metric A and

the set @ is a “cube” defined with respect to the metric A.
B. D. Wick (Georgia Tech)
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Main Results and Sketch of Proof Main Results

Remarks about Characterization of Carleson Measures

@ We have already proved that (a) < (b), and it is trivial (b) = (¢).
@ It only remains to prove that (¢) = (b).
e The proof of this Theorem follows from the T(1)-Theorem for

Bergman-type operators.
e In a neighborhood of the sphere 0B,, the metric A looks a
Euclidean-type quasi-metric. For example when n = 2 we have that

A(x,y) = [x1 = yi| + [x2 — yo| + |x3 — 3> + |xa — yal?

o The method of proof of the Euclidean Bergman-type T(1) theorem can
then be modified to case of Calderén-Zygmund operators with respect
to a quasi-metric (essentially verbatim).

@ It is possible to show that the T(1) condition reduces to the simpler
conditions in certain cases.

@ An alternate proof of this Theorem was recently given by Hyténen
and Martikainen. Their proof used a non-homogeneous
T(b)-Theorem on metric spaces.
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Main Results and Sketch of Proof Main Results

Checking the Theorem for Carleson Measures of H?

Definition (Carleson Measures for H*(C.))

A measure y is a Carleson measure for H2(Cy) (or H?(D)) if

/C f(2)IPdu(z) < C(u[f e,y VF € HA(Cy).

RIS

As is well-known this function-theoretic condition happens if and only if
the follow geometric condition is satisfied for all tents T(/) over | C R:

u(T()) < ClI| YICR.

If / C R is an interval, then T(/) will be a cube in R2. Restricting the
integral to T (/) and using standard estimates for the kernel one sees:

W < C(T()) = u(T() < CEl
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Main Results and Sketch of Proof Main Results

Checking the Theorem for Carleson Measures of H?

We want to show that if we know that p satisfies the geometric Carleson
condition, then

||Tu,%XQ||%2(<c+;M) < Cu(Q)
Observe that the function
— xe(§) 2
Fou()i= [ X8 du(e) € H(C-)
with norm a constant multiple of /u(Q).

Since the function then belongs to H?(C_), an application of the Carleson

Embedding property (or equivalently, the geometric condition for Carleson
measures) gives that

IT, %0l = [ 1Foulz)Pdn(z) < Clulu(@):
+
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Main Results and Sketch of Proof Haar Wavelets

The Haar Basis for L%(R)

o Let h'(x) := 1j0,1)(x) and let RO(x) = —10,1/2)(x) + L[z/2,1)(x)

1 1

0s s
08
04 E AR AT 1 z
0z '0'51_|
E) Rl ] 2 .
h(x) h°(x)

@ Let
D:={27kKj+1[0,1):jeZ keZ)

i.e., the usual dyadic grid in R.
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Main Results and Sketch of Proof Haar Wavelets

The Dyadic Grid in R

-3 -2 -1 0 1 2 3

Dyadic intervals of length %
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Main Results and Sketch of Proof Haar Wavelets

A Wavelet Basis for L?(R)

@ For | € D and let h; be the version of h° “adapted” to the interval /
o {h;: | € D} is the Haar wavelet basis for L2(R).

(F i) aqey = [ FOm(x)dx

F(x) = Y _(F, hi)zgyhi(x)

1eD

HfH%2(]R) = > Uf )yl
IeD
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Main Results and Sketch of Proof Haar Wavelets

Showing the the Calderén-Zygmund Operator is Bounded

Expand f and g in the Haar basis:
fF=> ()b &=>_(& himh

IeD IeD
(TF, &)y = D (Fsh)i2w)(&: o) 2wy Thi, ha) 2wy
I.JeD

— Z ol Z 2N Z <<f, h/>L2(R) <g, hJ>L2(R)<Th/, hJ)Lz(R)) .

I=J IcJ Jcli

@ The diagonal piece is easy, and contributes obvious estimates;
@ The other two pieces are dual to each other and reduce to controlling
operators like

X
> ATxn i) 2wy <f7 /I> (& h1) 12(w)-
1/ 12wy

1eD
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Main Results and Sketch of Proof Haar Wavelets

Littlewood-Paley Decomposition

@ Construct two independent dyadic lattices D; and D;.

@ There are special unit cubes Q° and R® of D; and D, respectively
that contain supp w deep inside them.

o Define expectation operators Ag (Haar function on Q) and A
(average on @), then we have for every p € L2(RY; p)

e=No+ > Agp,
QeD;

the series converges in L?(R9; 11). Moreover,

" Qeny
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Main Results and Sketch of Proof Haar Wavelets

Good and Bad Decomposition

We fix the decomposition of f and g into good and bad parts:

f = fgood + fbad, Where fgood & /\f + Z AQf
QeD1NG,

8 = 8good + 8bad » where 8good = /\g + Z ARg.
ReD,NG,

It turns out that for any fixed Q € Dy,

P{Qis bad} < §°

E(HfbadHB(Rd;u)) < 5HfHL2(]Rd;p,)'

Similar statements for g hold as well.
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Main Results and Sketch of Proof Haar Wavelets

Reduction to Controlling The Good Part

@ Using the decomposition above, we have
(Tu,mf7g>L2(Rd;u) = <Tu7mfg00d7ggood>L2(Rd;u) + R(f,8)
@ Using the construction above, we have that
E[Ru(f, &)l < 26| Tl 2(re:y— 2(re:) | F | L2(me: o) 1811 2R 10)-
e Choosing § small enough (< %) we only need to show that
[ Thimfzoods Egood) 12ty | < C(rs ms A, d)IF | 2z 18] 2
@ This will then give

I Tl 2Ry 12(RY:) < 2C(T, m, A, d).

B. D. Wick (Georgia Tech) Carleson Measures & Besov-Sobolev Spaces 29 / 32



Main Results and Sketch of Proof Haar Wavelets

Sketch of Proof

Estimating The Good Part

@ We then decompose the

(Tu,mfgoodaggood>L2(Rd;u) =A1+ A+ A3

@ The term A; is the diagonal part of the sum. This is the easiest part.
@ The term A is the long-range interaction part. The second easiest
part
o Here we use the Calderén-Zygmund Estimates and the hypothesis that
we can capture all the non-Ahlfors balls in the open set H.
@ The term Ags is the short-range interaction part.
o Here we use the T(1) hypothesis and reduce the estimates to
paraproducts.

@ These all then imply that

‘<T;L,mfgood7ggood>L2(Rd;u)‘ < C(T7 m, A7 d)HfHLZ(Rd;p,)HgHLZ(Rd;M)'
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Internet Analysis Seminar Announcement

Internet Analysis Seminar Announcement

2nd Internet Analysis Seminar will take place during the Fall 2011 — Spring
2012 Academic Year.

@ Phase | (October — February), approximately fifteen weekly, electronic
lectures will be provided via a public website.

@ Phase Il (March — May), participants from Phase | will apply to work
through a more advanced project.

@ Phase Il consists of a final one-week workshop held in June, during
which, participants will present their projects.

Topic: Multiparameter Harmonic Analysis or Non-Homogeneous Harmonic
Analysis Details available on:

http://internetanalysisseminar.gatech.edu/

Supported by National Science Foundation CAREER grant DMS #
0955432.
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Conclusion

Thank Youl
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