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Review of the One-Parameter Theory

Hilbert and Riesz Transforms

The Hilbert Transform is defined by

H(f )(x) :=
1

π

∫
R

f (y)
1

x − y
dy = f ∗

(
1

πy

)
(x).

The Riesz Transforms are the n-dimensional generalizations of the
Hilbert Transform. For each 1 ≤ j ≤ n we have

Rj(f )(x) :=
Γ(n+1

2 )

π
n+1
2

∫
Rn

f (y)
xj − yj

|x − y |n+1
dy = f ∗

(
Γ(n+1

2 )

π
n+1
2

yj

|y |n+1

)
(x).
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Review of the One-Parameter Theory Haar Wavelets

A Wavelet Basis for L2(Rn)

Let h1(x) := 1[0,1)(x) and let h0(x) := −1[0,1/2)(x) + 1[1/2,1)(x)

h1(x) h0(x)

Let
Dn := {2−k(j + [0, 1)n) : j ∈ Zn, k ∈ Z}

i.e., the usual dyadic grid in Rn.
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Review of the One-Parameter Theory Haar Wavelets

A Wavelet Basis for L2(Rn)

Let Try (f )(x) := f (x − y) and Dilt(f )(x) := t−n/2f ( x
t ).

Define

Sign := {ε = (ε1, . . . , εn) : εi ∈ {0, 1}} \ {(1, . . . , 1)}.

For Q ∈ Dn and ε ∈ Sign set

hε
Q(x) :=

n∏
j=1

Trc(Q)Dil|Q|h
εj (xj).

{hε
Q : Q ∈ Dn, ε ∈ Sign} is the Haar wavelet basis for L2(Rn).
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Review of the One-Parameter Theory BMO

The Space BMO(Rn)

Definition

‖b‖BMO := sup
Q

1

|Q|

∫
Q
|f (x)− fQ |2dx

Theorem (C. Fefferman (1971))

The dual of H1(Rn) is BMO(Rn), i.e.,
(
H1(Rn)

)∗
= BMO(Rn).

Definition (Square Function Characterization)

A function is in (dyadic) BMO(Rn) if and only if for any (dyadic) cube Q ′

we have a constant C such that:

1

|Q ′|
∑

Q⊂Q′

∑
ε∈Sign

|〈b, hε
Q〉|2 ≤ C .
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Review of the One-Parameter Theory BMO

BMO and Riesz Transforms

For each j = 1, . . . , n define the following commutator operator on L2(Rn):

[b,Rj ](f )(x) := b(x)Rj(f )(x)− Rj(bf )(x).

Theorem (Coifman, Rochberg, and Weiss (1976))

Let b ∈ BMO(Rn), then for j = 1, . . . , n

‖[b,Rj ]‖2→2 . ‖b‖BMO(Rn).

If ‖[b,Rj ]‖2→2 < +∞ for j = 1, . . . , n, then

‖b‖BMO(Rn) . max ‖[b,Rj ]‖2→2.

Gives BMO(Rn) as a space of operators on L2(Rn).
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Review of Multi-Parameter Theory

Product Spaces

We are concerned with product spaces:

R~n = Rn1 ⊗ · · · ⊗ Rnt = ⊗t
s=1Rns

D~n := ⊗t
s=1Dns is the tensor product of the usual dyadic grids in Rns .

Any R ∈ D~n is of the form

R = Q1 ⊗ · · · ⊗ Qt

with each Qs a dyadic cube in Rns .
Also, let Sig~n := {~ε = (ε1, . . . , εt) : εs ∈ Signs}
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Review of Multi-Parameter Theory Tensor Products of Wavelets

Tensor Product Wavelet Basis in L2(⊗t
s=1Rns)

Take the Haar wavelet basis described earlier in Rns , i.e.,

{hεs
Qs

: Qs ∈ Dns , εs ∈ Signs}

For each R ∈ D~n and ~ε ∈ Sig~n define the following function:

h~ε
R(x1, . . . , xt) :=

t∏
s=1

hεs
Qs

(xs)

{h~ε
R : R ∈ D~n,~ε ∈ Sig~n} is a wavelet basis for L2(⊗t

s=1Rns ).
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Review of Multi-Parameter Theory BMO in Product Spaces

Product BMO(⊗t
s=1Rns)

A Reasonable Guess:

Product BMO?

A function is in BMO(⊗t
s=1Rns ) if and only if for any rectangle S in

⊗t
s=1Rns there exists a constant C such that:

1

|S |
∑
R⊂S

∑
~ε∈Sig~n

|〈b, h~ε
R〉|2 ≤ C

THIS IS WRONG!!!

Defines a space called “Rectangular” BMO, which is larger than product
BMO(⊗t

s=1Rns ). (Counterexample due to Carleson).
Instead of rectangles, one must use arbitrary open sets in ⊗t

s=1Rns .
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Review of Multi-Parameter Theory BMO in Product Spaces

Product BMO(⊗t
s=1Rns)

Correct Definition:

Definition (Product BMO)

A function b is in BMO(⊗t
s=1Rns ) if and only if for any open set U in

⊗t
s=1Rns with finite measure there exists a constant C such that:

1

|U|
∑
R⊂U

∑
~ε∈Sig~n

|〈b, h~ε
R〉|2 ≤ C .

How do you check on every open set?

Theorem (S.-Y.A. Chang, R. Fefferman (1980))

The dual of product H1(⊗t
s=1Rns ) is product BMO(⊗t

s=1Rns ), i.e.,(
H1(⊗t

s=1Rns )
)∗

= BMO(⊗t
s=1Rns ).
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Review of Multi-Parameter Theory BMO in Product Spaces

BMO(⊗t
s=1Rns) and Iterated Commutators

Additional cancellation is present in the multi-parameter setting and
this can still be studied via commutators.

We need iterated (nested) commutators:
Let Rs, js denote the js th Riesz transform taken in the s parameter
variable.
For s = 1, . . . , t and for 1 ≤ js ≤ ns we consider the following iterated
(nested) commutators on L2(⊗t

s=1Rns ):

[· · · [b,R1, j1 ],R2, j2 ], · · · ],Rt, jt ](f )(x)

2 Parameter Iterated Commutator in Rn1 ⊗ Rn2

For s = 1, 2 and 1 ≤ js ≤ ns the iterated commutator is:

[[b,R1, j1 ],R2, j2 ](f )(x) := b(x)R1, j1R2, j2(f )(x)− R1, j1(b)(x)R2, j2(f )(x)

−R2, j2(b)(x)R1, j1(f )(x) + R1, j1R2, j2(bf )(x)
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Review of Multi-Parameter Theory BMO in Product Spaces

BMO(⊗t
s=1R) as an Operator Space

Theorem (C. Sadosky and S. Ferguson (2001))

Let b ∈ BMO(⊗t
s=1R), then

‖[· · · [b,H1],H2], · · · ],Ht ]]‖2→2 . ‖b‖BMO(⊗t
s=1R).

Theorem (M. Lacey and S. Ferguson (2002), M. Lacey and E.
Terwilleger (2004))

If ‖[· · · [b,H1],H2], · · · ],Ht ]‖2→2 < +∞, then

‖b‖BMO(⊗t
s=1R) . ‖[· · · [b,H1],H2], · · · ],Ht ]‖2→2.

Restatement of Nehari’s Theorem for little Hankels on the polydisc.
KEY POINT: Provides another characterization of BMO(⊗t

s=1R).
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Results and Proofs

Main Result

It is possible to generalize the Coifman, Rochberg, Weiss result to the
product setting, and the Ferguson, Lacey, Terwilleger results to more
general Euclidean spaces:

Theorem (S. Petermichl, J. Pipher, M. Lacey, BDW (2007))

Let b ∈ BMO(⊗t
s=1Rns ), then for s = 1, . . . , t, and all 1 ≤ js ≤ ns

‖[· · · [b,R1, j1 ],R2, j2 ], · · · ],Rt, jt ]‖2→2 . ‖b‖BMO(⊗t
s=1Rns ).

If ‖[· · · [b,R1, j1 ],R2, j2 ], · · · ],Rt, jt ]‖2→2 < +∞ for all s = 1, . . . , t and all
1 ≤ js ≤ ns , then

‖b‖BMO(⊗t
s=1Rns ) . max ‖[· · · [b,R1, j1 ],R2, j2 ], · · · ],Rt, jt ]‖2→2.
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Results and Proofs Proof of the Upper Bound

Riesz Transforms and Dyadic Shifts

The Riesz transforms can be recovered by an averaging of certain
operators which map Haar functions to themselves (Haar shifts).

For the dyadic grid D in Rn let σ : D → D with 2n|σ(Q)| = |Q|.
Use the same notation for a map σ : Sign → Sign.

Let
Xhε

Q := h
σ(ε)
σ(Q).

Theorem (S. Petermichl, S. Treil, A. Volberg (2002))

The operator X is a bounded linear operator on Lp(Rn) for all 1 < p < ∞.

The convex hull, with respect to the strong operator topology, of the
operators X contain the Riesz transforms.
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Results and Proofs Proof of the Upper Bound

Reduction to Commutators with Haar Shifts

We construct the Haar shifts Xs defined on L2(Rns ) for each s = 1, . . . , t.

Proposition

The operator
~X := X1 ⊗ · · · ⊗Xt

extends to a bounded linear operator on Lp(R~n) for all 1 < p < ∞.

To prove the upper bound in our theorem, it is sufficient to deduce the
estimate for the operators:

C ~X(b, f ) := [· · · [b,X1], · · · ],Xt ](f )

viewed as acting on L2(R~n).
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Results and Proofs Proof of the Upper Bound

Multi-Parameter Paraproducts

Consider the bilinear operators, (multi-parameter paraproducts):

Π(f1, f2) :=
∑

R∈D~n

εR〈f1, h~ε1
R 〉〈f2, h

~ε2
R 〉

h~ε3
R√
|R|

.

Theorem (J.-L. Journé (1985), C. Muscalu, J. Pipher, T. Tao, and C.
Thiele (2003), M. Lacey and J. Metcalfe (2004))

If for all 1 ≤ s ≤ t, there is at most one choice of j = 1, 2, 3 with εj ,s = ~1,
then the operator B satisfies

Π : Lp × Lq −→ Lr , 1 < p, q < ∞ , 1
p + 1

q = 1
r .

If in addition, ~ε1 6= ~1, we will have the estimates

Π : BMO × Lp → Lp , 1 < p < ∞.
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Results and Proofs Proof of the Upper Bound

Main Idea in the Proof of the Upper Bound

We consider the one-parameter setting first:

CX(b, f ) := [b,X](f ) =
∑

Q,Q′∈D

∑
ε,ε′ 6=~1

〈b, hε′
Q′〉〈f , hε

Q〉[hε′
Q′X]hε

Q .

Compute the following:
[hε′

Q′ ,X]hε
Q

[hε′
Q′ ,X]hε

Q =



0 Q ∩ Q ′ 6= ∅ , Q ( Q ′

±|Q|−1/2h
σ(ε)
σ(Q) −Xhε′

Qhε
Q Q = Q ′

|Q|−1/2
(
±hε′

σ(Q) ± h
σ(ε′)
σ2(Q)

)
Q ′ = σ(Q)

±|Q|−1/2h
σ(ε′)
σ(Q′) 2n|Q ′| = Q , Q ′ 6= σ(Q)

|Q|−1/2
(
±hε′

Q′ ± h
σ(ε′)
σ(Q′)

)
2n|Q ′| < |Q| .
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Results and Proofs Proof of the Upper Bound

Main Idea in the Proof of the Upper Bound

The computation demonstrates the following:

The first line captures the essential cancellation in BMO and
commutators.

CX(b, f ) is a finite linear combination of terms of the form

XΠ(b, f ), Π(b,Xf )

for appropriate choices of X and paraproducts Π.

These are good paraproducts. We can apply the previous theorem,
and CX(b, f ) will be bounded on L2(Rn) with norm controlled by
BMO(Rn). This in turn implies C(b, f ) is bounded.
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Results and Proofs Proof of the Upper Bound

Proof of the Upper Bound in the Multi-Parameter Setting

To prove the upper bound in the multi-parameter setting, we “tensor”
the previous argument.

For the operators the Haar shifts Xs , we compute directly

[· · · [h~ε
R ,X1], · · · ],Xt ]h

~ε ′

R′

The result is a tensor product of the one-parameter answer.

We can write the commutator C ~X(b, f ) as a finite linear combination
of terms

~XΠ(b, f ) , Π(b, ~Xf )

for different choices of multi-parameter paraproduct Π and different
choices of operator ~X.

C ~X(b, f ) will be bounded on L2(R~n) with norm controlled by
BMO(⊗t

s=1Rns ). Gives C(b, f ) bounded with norm controlled by
product BMO.
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Results and Proofs Proof of the Lower Bound

The Lower Bound

Again rely upon paraproducts.

Define a space reduced BMO, which plays the role of rectangle BMO.
This space is “related” to product BMO via Journé’s Lemma.

If the commutators are bounded, then we have an initial weak lower
bound in terms of reduced BMO. We want to boot-strap this lower
bound to a lower bound in terms of product BMO.

There are difficulties:

The approach used in Lacey-Ferguson and Lacey-Terwilleger depends
upon the relationship between the Hilbert transform and projections.
We need to do something similar to the Hilbert transform case. To
accomplish this we perform a reduction to deal with “nice” multipliers.
With this reduction it is possible to implement the general scheme
established in the papers Lacey-Ferguson and Lacey-Terwilleger.
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Results and Proofs Proof of the Lower Bound

Thank You
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