Remarks on Product VMO or Compactness of Little Hankel Operators

(joint with M. Lacey and E. Terwilleger)

Brett D. Wick

Department of Mathematics Brown University

July 2004 International Workshop on Operator Theory and its Applications (IWOTA)

Nehari's Theorem

$$L^{2}(\mathbb{T}) = H^{2}(\mathbb{D}) \oplus H^{2}_{-}(\mathbb{D})$$

Let \mathbb{P}_{-} denote the orthogonal projection of $L^{2}(\mathbb{T})$ onto $H^{2}_{-}(\mathbb{D})$, i.e.,

$$\mathbb{P}_{-}: L^{2}(\mathbb{T}) \to H^{2}_{-}(\mathbb{D}).$$

For $\varphi \in L^2(\mathbb{T})$, define the Hankel operator

$$H_arphi:H^2(\mathbb{D})\longrightarrow H^2_-(\mathbb{D})$$
 by $H_arphi f:=\mathbb{P}_-M_arphi f$

with $M_{\varphi}f := \varphi f$.

Theorem. (Nehari, 1957) H_{φ} is bounded iff there is a function $\psi \in L^{\infty}(\mathbb{T})$ for which

$$\mathbb{P}_{-}\varphi = \mathbb{P}_{-}\psi.$$

In this case,

$$\|H_{\varphi}\| = \inf\{\|\psi\|_{\infty} : \widehat{\varphi}(m) = \widehat{\psi}(m), \ m < 0\}$$
$$= \|\mathbb{P}_{-}\varphi\|_{BMO(\mathbb{T})}.$$

Hartman Compactness Criteria

Let $H^{\infty}(\mathbb{D}) + C(\mathbb{T})$ denote the functions $\varphi \in L^{\infty}(\mathbb{T})$ such that $\varphi = f + g$, where $f \in H^{\infty}(\mathbb{D})$ and $g \in C(\mathbb{T})$.

Theorem. (Hartman, 1958) Let $\varphi \in L^{\infty}$. *TFAE:*

- (i) H_{φ} is compact;
- (ii) $\varphi \in H^{\infty}(\mathbb{D}) + C(\mathbb{T});$
- (iii) there exists $\psi \in C(\mathbb{T})$ such that $H_{\varphi} = H_{\psi}$.

This theorem, along with the fact

 $VMO(\mathbb{T}) = \{\xi + \tilde{\eta} : \xi, \eta \in C(\mathbb{T})\},$ gives the following

Theorem. Let $\varphi \in L^2(\mathbb{T})$. Then H_{φ} is compact iff $\mathbb{P}_{-}\varphi \in VMO(\mathbb{T})$.

Little Hankel Operators on the Bi-Torus

 $H^2_{\pm,\pm}(\mathbb{D}^2)$ is the space of square integrable functions which are (anti-) holomorphic in each variable separately.

Since

$$L^{2}(\mathbb{T}^{2}) = \oplus_{\varepsilon \in \{\pm,\pm\}} H^{2}_{\varepsilon}(\mathbb{D}^{2}).$$

define

$$\mathbb{P}_{\pm,\pm}: L^2(\mathbb{T}^2) \to H^2_{\pm,\pm}(\mathbb{D}^2).$$

The "little" Hankel operators from $H^2(\mathbb{D}^2)$ to $H^2_{-,-}(\mathbb{D}^2)$ are given by

$$h_{\varphi} := \mathbb{P}_{-,-}M_{\varphi},$$

where $M_{\varphi}f := \varphi f$.

Main Results

Theorem 1 The little Hankel operator h_{φ} is bounded iff there is a function $\psi \in L^{\infty}(\mathbb{T}^2)$ for which $\mathbb{P}_{-,-}\varphi = \mathbb{P}_{-,-}\psi$, and we have the equivalence

 $\|h_{\varphi}\| \approx \inf\{\|\psi\|_{\infty} : \mathbb{P}_{-,-}\varphi = \mathbb{P}_{-,-}\psi\}$ $\approx \|\mathbb{P}_{-,-}\varphi\|_{BMO(\mathbb{T}^{2})}.$

Theorem 2 The operator h_{φ} is compact iff $\mathbb{P}_{-,-}\varphi$ is in the closure of $C(\mathbb{T}^2)$ with respect to the BMO topology. This space we call $VMO(\mathbb{T}^2)$.

Theorem 3 Let $\varphi \in L^{\infty}(\mathbb{T}^2)$. Then the following are equivalent:

(i) h_{φ} is compact;

(ii) $\varphi \in \mathcal{L}^{\infty}(\mathbb{T}^2) + C(\mathbb{T}^2);$

(iii) $\exists a g \in C(\mathbb{T}^2)$ such that $h_{\varphi} = h_g$.

Remarks

- Theorem 1 is just a restatement of the result by Ferguson and Lacey from 2002.
- The space $\mathcal{L}^{\infty}(\mathbb{T}^2)$ plays the role that $H^{\infty}(\mathbb{D})$ does in the one variable setting.

This is the set of functions in $L^{\infty}(\mathbb{T}^2)$ that are in the kernel of $\mathbb{P}_{-,-}$.

Can also be thought of as the set of functions that have an analytic extension in at least one variable.

- This can be viewed as the extension of Hartman's Compactness Criterion to the bi-disk.
- The essential norm of an operator is given by

 $||h_{\varphi}||_e := \inf\{||h_{\varphi} - K||\},\$

with the infimum taken over all compact operators $K : H^2(\mathbb{D}^2) \to H_{-,-}(\mathbb{D}^2)$.

• Then $||h_{\varphi}||_e = 0$ iff h_{φ} is compact.

An even stronger statement is true:

Theorem 4 Let $\varphi \in L^{\infty}(\mathbb{T}^2)$. Then

 $||h_{\varphi}||_{e} \approx \operatorname{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty}(\mathbb{T}^{2}) + C(\mathbb{T}^{2})).$

The crucial fact is that $\mathcal{L}^{\infty} + C$ is a closed subspace.

Proof of Theorem 3 Continued

 $((ii) \Rightarrow (iii))$

If $\varphi \in \mathcal{L}^{\infty} + C$, then $\varphi = \psi + g$ with $\psi \in \mathcal{L}^{\infty}(\mathbb{T}^2)$ and $g \in C(\mathbb{T}^2)$.

For any $f \in H^2(\mathbb{D}^2)$ we have

$$h_{\varphi}f = \mathbb{P}_{-,-}\varphi f = \mathbb{P}_{-,-}[gf + \psi f]$$
$$= \mathbb{P}_{-,-}gf + \mathbb{P}_{-,-}\psi f = h_g f,$$

because $\psi f \in \mathcal{L}^2(\mathbb{T}^2)$ and $\mathbb{P}_{-,-}(\mathcal{L}^2(\mathbb{T}^2)) = 0$.

 $((iii) \Rightarrow (ii))$

 \exists a function $g \in C(\mathbb{T}^2)$ such that $h_{\varphi} = h_g$. So

$$\mathbb{P}_{-,-}((\varphi - g)f) = 0 \qquad \forall f \in H^2(\mathbb{D}^2).$$

Taking f = 1 gives $\varphi - g \in \mathcal{L}^2(\mathbb{T}^2)$. By hypothesis, we have $\varphi - g \in L^\infty(\mathbb{T}^2)$, i.e. $\varphi \in \mathcal{L}^\infty(\mathbb{T}^2) + C(\mathbb{T}^2)$.

Proof of Theorem 3 Continued

 $((i) \Leftrightarrow (ii))$

Follows immediately from Theorem 4.

 h_{φ} is compact iff $||h_{\varphi}||_e = 0$.

But if $||h_{\varphi}||_e = 0$, by Theorem 4 dist_{L^{∞}}($\varphi, \mathcal{L}^{\infty} + C$) = 0.

So
$$\varphi \in \mathcal{L}^{\infty} + C$$
.

If $\varphi \in \mathcal{L}^{\infty} + C$, then

$$\operatorname{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty} + C) = 0.$$

By Theorem 4 $||h_{\varphi}||_e = 0$, or h_{φ} is compact.

• In the classic (one variable) setting Nehari's Theorem can be stated as

$$||H_{\varphi}|| = \operatorname{dist}_{L^{\infty}}(\varphi, H^{\infty}(\mathbb{D})).$$

• We need something like this in the two variable setting.

In two variables, Theorem 1 (Nehari's Theorem) can be restated as:

 $\|h_{\varphi}\| \approx \operatorname{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty}(\mathbb{T}^2))$

Proof of this fact follows immediately from Theorem 1 (work of Ferguson and Lacey).

We are also going to need a characterization of the space $\mathcal{L}^{\infty} + C$.

Similar to the one-variable case we have the following theorem.

Theorem 5 $\mathcal{L}^{\infty} + C$ is a closed subspace of $L^{\infty}(\mathbb{T}^2)$, and moreover

$$\mathcal{L}^{\infty} + C = \operatorname{clos}_{L^{\infty}} \left(\bigcup_{n,m=0}^{\infty} \overline{z}_{1}^{n} \overline{z}_{2}^{m} \mathcal{L}^{\infty}(\mathbb{T}^{2}) \right).$$

The above theorem will follow from

Theorem 6 Let $C_{\mathcal{L}}(\mathbb{T}^2) := \mathcal{L}^{\infty}(\mathbb{T}^2) \cap C(\mathbb{T}^2)$ and $\varphi \in C(\mathbb{T}^2)$. Then

$$\operatorname{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty}) = \operatorname{dist}_{L^{\infty}}(\varphi, C_{\mathcal{L}}).$$

•
$$C_{\mathcal{L}}(\mathbb{T}^2) \subset \mathcal{L}^{\infty}(\mathbb{T}^2)$$
 implies
 $\operatorname{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty}) \leq \operatorname{dist}_{L^{\infty}}(\varphi, C_{\mathcal{L}}).$

• The other inequality follows from the same argument as in one variable.

Let $\psi \in \mathcal{L}^{\infty}(\mathbb{T}^2)$.

Using the harmonic extension of functions to the bi-disk we have

$$\begin{aligned} \|\varphi - \psi\|_{\infty} &\geq \lim_{r \to 1} \|(\varphi - \psi)_r\|_{\infty} \\ &\geq \lim_{r \to 1} (\|\varphi - \psi_r\|_{\infty} - \|\varphi - \varphi_r\|_{\infty}) \\ &= \lim_{r \to 1} \|\varphi - \psi_r\|_{\infty}. \end{aligned}$$

This gives

$$\mathsf{dist}_{L^{\infty}}(\varphi,\mathcal{L}^{\infty}) \geq \mathsf{dist}_{L^{\infty}}(\varphi,C_{\mathcal{L}}).$$

- Theorem 6 gives that $C/C_{\mathcal{L}}$ has an isometric embedding in $L^{\infty}/\mathcal{L}^{\infty}$. So we may view it as a closed subspace of $L^{\infty}/\mathcal{L}^{\infty}$.
- Let $\rho : L^{\infty} \to L^{\infty}/\mathcal{L}^{\infty}$ be the natural quotient map. Then

$$\mathcal{L}^{\infty} + C = \rho^{-1} (C/C_{\mathcal{L}})$$

is closed.

• Finally,

$$\mathcal{L}^{\infty} + C = \operatorname{clos}_{L^{\infty}} \left(\bigcup_{n,m=0}^{\infty} \overline{z}_{1}^{n} \overline{z}_{2}^{m} \mathcal{L}^{\infty}(\mathbb{T}^{2}) \right),$$

because continuous functions on \mathbb{T}^2 can be uniformly approximated by polynomials in z_1 , z_2 and their conjugates.

• The proof is similar to the corresponding fact in the one variable case. Namely,

$$H^{\infty} + C = \operatorname{clos}_{L^{\infty}} \left(\cup_{n=0}^{\infty} \overline{z}^{n} H^{\infty} \right).$$

• Let $K : H^2(\mathbb{D}^2) \to H^2_{-,-}(\mathbb{D}^2)$ be a compact operator.

We want to estimate $||h_{\varphi} - K||$ from below.

• Let S_j be multiplication by the variable z_j . Note S_j is a contraction. Then

$$\begin{split} \|h_{\varphi} - K\| &\geq \|(h_{\varphi} - K)S_1^n S_2^m\| \\ &\geq \|h_{\varphi}S_1^n S_2^m\| - \|KS_1^n S_2^m\| \\ &= \|h_{z_1^n z_2^m \varphi}\| - \|KS_1^n S_2^m\| \\ &\gtrsim \operatorname{dist}_{L^{\infty}}(\varphi, \overline{z}_1^n \overline{z}_2^m \mathcal{L}^{\infty}) - \|KS_1^n S_2^m\| \\ &\geq \operatorname{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty} + C) - \|KS_1^n S_2^m\|. \end{split}$$

- Used the fact that $\|h_{\varphi}\| \approx \operatorname{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty}).$
- Also used that L[∞] + C is a closed subspace.

Proof of Theorem 4 Continued

We need one Lemma

Lemma 7 Let K be a compact operator from $H^2(\mathbb{D}^2)$ to $H^2_{-,-}(\mathbb{D}^2)$. Then $\|KS_1^nS_2^m\| \to 0$

as $n,m \to \infty$.

• Implies $||h_{\varphi}-K|| \gtrsim \text{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty}+C)$ for any compact operator K. Which gives

$$\|h_{\varphi}\|_{e} \gtrsim \operatorname{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty} + C).$$

Now we need to estimate $||h_{\varphi} - K||$ from above.

• Let g be a trigonometric polynomial. Then h_g is a compact (finite rank) operator. So

$$\|h_{\varphi}\|_{e} \leq \inf_{g \in C} \|h_{\varphi} - h_{g}\| = \inf_{g \in C} \|h_{\varphi-g}\|.$$

Proof of Theorem 4 Continued

• By restating Nehari's Theorem we have

$$\|h_{\varphi}\|_{e} \lesssim \inf_{g \in C, \psi \in \mathcal{L}^{\infty}} \|\varphi - g - \psi\|_{\infty}$$

 $\lesssim \operatorname{dist}_{L^{\infty}}(\varphi, \mathcal{L}^{\infty} + C).$