Remarks on Product $V M O$

Or

Compactness of Little Hankel Operators

(joint with M. Lacey and E. Terwilleger)

Brett D. Wick

Department of Mathematics Brown University

$$
\text { July } 2004
$$

International Workshop on Operator Theory and its Applications (IWOTA)

Nehari's Theorem

$$
L^{2}(\mathbb{T})=H^{2}(\mathbb{D}) \oplus H_{-}^{2}(\mathbb{D})
$$

Let $\mathbb{P}_{\text {- }}$ denote the orthogonal projection of $L^{2}(\mathbb{T})$ onto $H_{-}^{2}(\mathbb{D})$, i.e.,

$$
\mathbb{P}_{-}: L^{2}(\mathbb{T}) \rightarrow H_{-}^{2}(\mathbb{D})
$$

For $\varphi \in L^{2}(\mathbb{T})$, define the Hankel operator

$$
\begin{aligned}
H_{\varphi}: H^{2}(\mathbb{D}) \longrightarrow & H_{-}^{2}(\mathbb{D}) \text { by } \\
& H_{\varphi} f:=\mathbb{P}_{-} M_{\varphi} f
\end{aligned}
$$

with $M_{\varphi} f:=\varphi f$.
Theorem. (Nehari, 1957) H_{φ} is bounded iff there is a function $\psi \in L^{\infty}(\mathbb{T})$ for which

$$
\mathbb{P}_{-} \varphi=\mathbb{P}_{-} \psi .
$$

In this case,

$$
\begin{aligned}
\left\|H_{\varphi}\right\| & =\inf \left\{\|\psi\|_{\infty}: \widehat{\varphi}(m)=\widehat{\psi}(m), m<0\right\} \\
& =\left\|\mathbb{P}_{-} \varphi\right\|_{B M O(\mathbb{T})} .
\end{aligned}
$$

Hartman Compactness Criteria

Let $H^{\infty}(\mathbb{D})+C(\mathbb{T})$ denote the functions $\varphi \in$ $L^{\infty}(\mathbb{T})$ such that $\varphi=f+g$, where $f \in$ $H^{\infty}(\mathbb{D})$ and $g \in C(\mathbb{T})$.

Theorem. (Hartman, 1958) Let $\varphi \in L^{\infty}$. TFAE:
(i) H_{φ} is compact;
(ii) $\varphi \in H^{\infty}(\mathbb{D})+C(\mathbb{T})$;
(iii) there exists $\psi \in C(\mathbb{T})$ such that $H_{\varphi}=$ H_{ψ}.

This theorem, along with the fact

$$
V M O(\mathbb{T})=\{\xi+\widetilde{\eta}: \xi, \eta \in C(\mathbb{T})\}
$$

gives the following
Theorem. Let $\varphi \in L^{2}(\mathbb{T})$. Then H_{φ} is compact iff $\mathbb{P}_{-} \varphi \in V M O(\mathbb{T})$.

Little Wankel Operators on the Bi-Torus

$H_{ \pm, \pm}^{2}\left(\mathbb{D}^{2}\right)$ is the space of square integrable functions which are (anti-) holomorphic in each variable separately.

Since

$$
L^{2}\left(\mathbb{T}^{2}\right)=\oplus_{\varepsilon \in\{ \pm, \pm\}} H_{\varepsilon}^{2}\left(\mathbb{D}^{2}\right)
$$

define

$$
\mathbb{P}_{ \pm, \pm}: L^{2}\left(\mathbb{T}^{2}\right) \rightarrow H_{ \pm, \pm}^{2}\left(\mathbb{D}^{2}\right)
$$

The "little" Hankel operators from $H^{2}\left(\mathbb{D}^{2}\right)$ to $H_{-,-}^{2}\left(\mathbb{D}^{2}\right)$ are given by

$$
h_{\varphi}:=\mathbb{P}_{-,-} M_{\varphi},
$$

where $M_{\varphi} f:=\varphi f$.

Main Results

Theorem 1 The little Hankel operator h_{φ} is bounded iff there is a function $\psi \in L^{\infty}\left(\mathbb{T}^{2}\right)$ for which $\mathbb{P}_{-,-\varphi}=\mathbb{P}_{-,-} \psi$, and we have the equivalence

$$
\begin{aligned}
\left\|h_{\varphi}\right\| & \approx \inf \left\{\|\psi\|_{\infty}: \mathbb{P}_{-,-}=\mathbb{P}_{-,-} \psi\right\} \\
& \approx\left\|\mathbb{P}_{-,-} \varphi\right\|_{B M O\left(\mathbb{T}^{2}\right)}
\end{aligned}
$$

Theorem 2 The operator h_{φ} is compact iff $\mathbb{P}_{-,-\varphi}$ is in the closure of $C\left(\mathbb{T}^{2}\right)$ with respect to the $B M O$ topology. This space we call $V M O\left(\mathbb{T}^{2}\right)$.

Theorem 3 Let $\varphi \in L^{\infty}\left(\mathbb{T}^{2}\right)$. Then the following are equivalent:
(i) h_{φ} is compact;
(ii) $\varphi \in \mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)+C\left(\mathbb{T}^{2}\right)$;
(iii) \exists a $g \in C\left(\mathbb{T}^{2}\right)$ such that $h_{\varphi}=h_{g}$.

Remarks

- Theorem 1 is just a restatement of the result by Ferguson and Lacey from 2002.
- The space $\mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)$ plays the role that $H^{\infty}(\mathbb{D})$ does in the one variable setting.

This is the set of functions in $L^{\infty}\left(\mathbb{T}^{2}\right)$ that are in the kernel of $\mathbb{P}_{-,-}$.

Can also be thought of as the set of functions that have an analytic extension in at least one variable.

Proof of Theorem 3

- This can be viewed as the extension of Hartman's Compactness Criterion to the bi-disk.
- The essential norm of an operator is given by

$$
\left\|h_{\varphi}\right\|_{e}:=\inf \left\{\left\|h_{\varphi}-K\right\|\right\}
$$

with the infimum taken over all compact operators $K: H^{2}\left(\mathbb{D}^{2}\right) \rightarrow H_{-,-}\left(\mathbb{D}^{2}\right)$.

- Then $\left\|h_{\varphi}\right\|_{e}=0$ iff h_{φ} is compact.

An even stronger statement is true:
Theorem 4 Let $\varphi \in L^{\infty}\left(\mathbb{T}^{2}\right)$. Then

$$
\left\|h_{\varphi}\right\|_{e} \approx \operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)+C\left(\mathbb{T}^{2}\right)\right) .
$$

The crucial fact is that $\mathcal{L}^{\infty}+C$ is a closed subspace.

Proof of Theorem 3 Continued

$((\mathrm{ii}) \Rightarrow(\mathrm{iii}))$

If $\varphi \in \mathcal{L}^{\infty}+C$, then $\varphi=\psi+g$ with $\psi \in$ $\mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)$ and $g \in C\left(\mathbb{T}^{2}\right)$.

For any $f \in H^{2}\left(\mathbb{D}^{2}\right)$ we have

$$
\begin{aligned}
h_{\varphi} f & =\mathbb{P}_{-,-}-\varphi f=\mathbb{P}_{-,-}[g f+\psi f] \\
& =\mathbb{P}_{-,-} g f+\mathbb{P}_{-,-} \psi f=h_{g} f
\end{aligned}
$$

because $\psi f \in \mathcal{L}^{2}\left(\mathbb{T}^{2}\right)$ and $\mathbb{P}_{-,-}\left(\mathcal{L}^{2}\left(\mathbb{T}^{2}\right)\right)=$ 0 .
$((\mathrm{iii}) \Rightarrow(\mathrm{ii}))$
\exists a function $g \in C\left(\mathbb{T}^{2}\right)$ such that $h_{\varphi}=h_{g}$. So

$$
\mathbb{P}_{-,-}((\varphi-g) f)=0 \quad \forall f \in H^{2}\left(\mathbb{D}^{2}\right)
$$

Taking $f=1$ gives $\varphi-g \in \mathcal{L}^{2}\left(\mathbb{T}^{2}\right)$. By hypothesis, we have $\varphi-g \in L^{\infty}\left(\mathbb{T}^{2}\right)$, i.e. $\varphi \in \mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)+C\left(\mathbb{T}^{2}\right)$.

Proof of Theorem 3 Continued

$((\mathrm{i}) \Leftrightarrow(\mathrm{ii}))$

Follows immediately from Theorem 4.
h_{φ} is compact iff $\left\|h_{\varphi}\right\|_{e}=0$.

But if $\left\|h_{\varphi}\right\|_{e}=0$, by Theorem 4

$$
\operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}+C\right)=0
$$

So $\varphi \in \mathcal{L}^{\infty}+C$.

If $\varphi \in \mathcal{L}^{\infty}+C$, then

$$
\operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}+C\right)=0
$$

By Theorem $4\left\|h_{\varphi}\right\|_{e}=0$, or h_{φ} is compact.

Proof of Theorem 4

- In the classic (one variable) setting Nehari's Theorem can be stated as

$$
\left\|H_{\varphi}\right\|=\operatorname{dist}_{L^{\infty}}\left(\varphi, H^{\infty}(\mathbb{D})\right) .
$$

- We need something like this in the two variable setting.

In two variables, Theorem 1 (Nehari's Theorem) can be restated as:

$$
\left\|h_{\varphi}\right\| \approx \operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)\right)
$$

Proof of this fact follows immediately from Theorem 1 (work of Ferguson and Lacey).

We are also going to need a characterization of the space $\mathcal{L}^{\infty}+C$.

Similar to the one-variable case we have the following theorem.

Theorem $5 \mathcal{L}^{\infty}+C$ is a closed subspace of $L^{\infty}\left(\mathbb{T}^{2}\right)$, and moreover

$$
\mathcal{L}^{\infty}+C=\operatorname{clos}_{L^{\infty}}\left(\bigcup_{n, m=0}^{\infty} \bar{z}_{1}^{n} \bar{z}_{2}^{m} \mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)\right)
$$

The above theorem will follow from
Theorem 6 Let $C_{\mathcal{L}}\left(\mathbb{T}^{2}\right):=\mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right) \cap C\left(\mathbb{T}^{2}\right)$ and $\varphi \in C\left(\mathbb{T}^{2}\right)$. Then

$$
\operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}\right)=\operatorname{dist}_{L^{\infty}}\left(\varphi, C_{\mathcal{L}}\right)
$$

Proof of Theorem 6

- $C_{\mathcal{L}}\left(\mathbb{T}^{2}\right) \subset \mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)$ implies

$$
\operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}\right) \leq \operatorname{dist}_{L^{\infty}}\left(\varphi, C_{\mathcal{L}}\right)
$$

- The other inequality follows from the same argument as in one variable.

Let $\psi \in \mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)$.
Using the harmonic extension of functions to the bi-disk we have

$$
\begin{aligned}
\|\varphi-\psi\|_{\infty} & \geq \lim _{r \rightarrow 1}\left\|(\varphi-\psi)_{r}\right\|_{\infty} \\
& \geq \lim _{r \rightarrow 1}\left(\left\|\varphi-\psi_{r}\right\|_{\infty}-\left\|\varphi-\varphi_{r}\right\|_{\infty}\right) \\
& =\lim _{r \rightarrow 1}\left\|\varphi-\psi_{r}\right\|_{\infty} .
\end{aligned}
$$

This gives

$$
\operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}\right) \geq \operatorname{dist}_{L^{\infty}}\left(\varphi, C_{\mathcal{L}}\right)
$$

Proof of Theorem 5

- Theorem 6 gives that $C / C_{\mathcal{L}}$ has an isometric embedding in $L^{\infty} / \mathcal{L}^{\infty}$. So we may view it as a closed subspace of $L^{\infty} / \mathcal{L}^{\infty}$.
- Let $\rho: L^{\infty} \rightarrow L^{\infty} / \mathcal{L}^{\infty}$ be the natural quotient map. Then

$$
\mathcal{L}^{\infty}+C=\rho^{-1}\left(C / C_{\mathcal{L}}\right)
$$

is closed.

- Finally,

$$
\mathcal{L}^{\infty}+C=\operatorname{clos}_{L^{\infty}}\left(\cup_{n, m=0}^{\infty} \bar{z}_{1}^{n} \bar{z}_{2}^{m} \mathcal{L}^{\infty}\left(\mathbb{T}^{2}\right)\right)
$$

because continuous functions on \mathbb{T}^{2} can be uniformly approximated by polynomials in z_{1}, z_{2} and their conjugates.

- The proof is similar to the corresponding fact in the one variable case. Namely,

$$
H^{\infty}+C=\operatorname{clos}_{L^{\infty}}\left(\cup_{n=0}^{\infty} \bar{z}^{n} H^{\infty}\right)
$$

Proof of Theorem 4

- Let $K: H^{2}\left(\mathbb{D}^{2}\right) \rightarrow H_{-,-}^{2}\left(\mathbb{D}^{2}\right)$ be a compact operator.

We want to estimate $\left\|h_{\varphi}-K\right\|$ from below.

- Let S_{j} be multiplication by the variable z_{j}. Note S_{j} is a contraction. Then

$$
\begin{aligned}
\left\|h_{\varphi}-K\right\| & \geq\left\|\left(h_{\varphi}-K\right) S_{1}^{n} S_{2}^{m}\right\| \\
& \geq\left\|h_{\varphi} S_{1}^{n} S_{2}^{m}\right\|-\left\|K S_{1}^{n} S_{2}^{m}\right\| \\
& =\left\|h_{z_{1}^{n} z_{2}^{m} \varphi}\right\|-\left\|K S_{1}^{n} S_{2}^{m}\right\| \\
& \gtrsim \operatorname{dist}_{L^{\infty}}\left(\varphi, \bar{z}_{1}^{n} z_{2}^{m} \mathcal{L}^{\infty}\right)-\left\|K S_{1}^{n} S_{2}^{m}\right\| \\
& \geq \operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}+C\right)-\left\|K S_{1}^{n} S_{2}^{m}\right\| .
\end{aligned}
$$

- Used the fact that $\left\|h_{\varphi}\right\| \approx \operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}\right)$.
- Also used that $\mathcal{L}^{\infty}+C$ is a closed subspace.

Proof of Theorem 4 Continued

We need one Lemma

Lemma 7 Let K be a compact operator from $H^{2}\left(\mathbb{D}^{2}\right)$ to $H_{-,-}^{2}\left(\mathbb{D}^{2}\right)$. Then

$$
\left\|K S_{1}^{n} S_{2}^{m}\right\| \rightarrow 0
$$

as $n, m \rightarrow \infty$.

- Implies $\left\|h_{\varphi}-K\right\| \gtrsim \operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}+C\right)$ for any compact operator K. Which gives

$$
\left\|h_{\varphi}\right\|_{e} \gtrsim \operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}+C\right) .
$$

Now we need to estimate $\left\|h_{\varphi}-K\right\|$ from above.

- Let g be a trigonometric polynomial. Then h_{g} is a compact (finite rank) operator. So

$$
\left\|h_{\varphi}\right\|_{e} \leq \inf _{g \in C}\left\|h_{\varphi}-h_{g}\right\|=\inf _{g \in C}\left\|h_{\varphi-g}\right\| .
$$

Proof of Theorem 4 Continued

- By restating Nehari's Theorem we have

$$
\begin{aligned}
\left\|h_{\varphi}\right\|_{e} & \lesssim \inf _{g \in C, \psi \in \mathcal{L}^{\infty}}\|\varphi-g-\psi\|_{\infty} \\
& \lesssim \operatorname{dist}_{L^{\infty}}\left(\varphi, \mathcal{L}^{\infty}+C\right)
\end{aligned}
$$

