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Nehari’s Theorem

L2(T) = H2(D)⊕H2
−(D)

Let P− denote the orthogonal projection of
L2(T) onto H2

−(D), i.e.,

P− : L2(T)→ H2
−(D).

For ϕ ∈ L2(T), define the Hankel operator

Hϕ : H2(D) −→ H2
−(D) by

Hϕf := P−Mϕf

with Mϕf := ϕf .

Theorem. (Nehari, 1957) Hϕ is bounded
iff there is a function ψ ∈ L∞(T) for which

P−ϕ = P−ψ.

In this case,

‖Hϕ‖ =inf{‖ψ‖∞ : ϕ̂(m) = ψ̂(m), m < 0}
=‖P−ϕ‖BMO(T).
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Hartman Compactness Criteria

Let H∞(D)+C(T) denote the functions ϕ ∈
L∞(T) such that ϕ = f + g, where f ∈
H∞(D) and g ∈ C(T).

Theorem. (Hartman, 1958) Let ϕ ∈ L∞.
TFAE:

(i) Hϕ is compact;

(ii) ϕ ∈ H∞(D) + C(T);

(iii) there exists ψ ∈ C(T) such that Hϕ =
Hψ.

This theorem, along with the fact

VMO(T) = {ξ+ η̃ : ξ, η ∈ C(T)},
gives the following

Theorem. Let ϕ ∈ L2(T). Then Hϕ is
compact iff P−ϕ ∈ VMO(T).
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Little Hankel Operators on the Bi-Torus

H2
±,±(D2) is the space of square integrable

functions which are (anti-) holomorphic in

each variable separately.

Since

L2(T2) = ⊕ε∈{±,±}H
2
ε (D2).

define

P±,± : L2(T2)→ H2
±,±(D2).

The “little” Hankel operators from H2(D2)

to H2
−,−(D2) are given by

hϕ := P−,−Mϕ,

where Mϕf := ϕf .
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Main Results

Theorem 1 The little Hankel operator hϕ
is bounded iff there is a function ψ ∈ L∞(T2)
for which P−,−ϕ = P−,−ψ, and we have the
equivalence

‖hϕ‖ ≈ inf{‖ψ‖∞ : P−,−ϕ = P−,−ψ}
≈ ‖P−,−ϕ‖BMO(T2).

Theorem 2 The operator hϕ is compact
iff P−,−ϕ is in the closure of C(T2) with
respect to the BMO topology. This space
we call VMO(T2).

Theorem 3 Let ϕ ∈ L∞(T2). Then the
following are equivalent:

(i) hϕ is compact;

(ii) ϕ ∈ L∞(T2) + C(T2);

(iii) ∃ a g ∈ C(T2) such that hϕ = hg.
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Remarks

• Theorem 1 is just a restatement of the

result by Ferguson and Lacey from 2002.

• The space L∞(T2) plays the role that

H∞(D) does in the one variable setting.

This is the set of functions in L∞(T2)

that are in the kernel of P−,−.

Can also be thought of as the set of

functions that have an analytic exten-

sion in at least one variable.

6



Proof of Theorem 3

• This can be viewed as the extension
of Hartman’s Compactness Criterion to
the bi-disk.

• The essential norm of an operator is
given by

‖hϕ‖e := inf{‖hϕ −K‖},

with the infimum taken over all com-
pact operators K : H2(D2)→ H−,−(D2).

• Then ‖hϕ‖e = 0 iff hϕ is compact.

An even stronger statement is true:

Theorem 4 Let ϕ ∈ L∞(T2). Then

‖hϕ‖e ≈ distL∞(ϕ,L∞(T2) + C(T2)).

The crucial fact is that L∞+C is a closed
subspace.
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Proof of Theorem 3 Continued

((ii)⇒(iii))

If ϕ ∈ L∞ + C, then ϕ = ψ + g with ψ ∈
L∞(T2) and g ∈ C(T2).

For any f ∈ H2(D2) we have

hϕf = P−,−ϕf = P−,−[gf + ψf ]

= P−,−gf + P−,−ψf = hgf,

because ψf ∈ L2(T2) and P−,−(L2(T2)) =

0.

((iii)⇒(ii))

∃ a function g ∈ C(T2) such that hϕ = hg.

So

P−,−((ϕ− g)f) = 0 ∀f ∈ H2(D2).

Taking f = 1 gives ϕ − g ∈ L2(T2). By

hypothesis, we have ϕ − g ∈ L∞(T2), i.e.

ϕ ∈ L∞(T2) + C(T2).
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Proof of Theorem 3 Continued

((i)⇔(ii))

Follows immediately from Theorem 4.

hϕ is compact iff ‖hϕ‖e = 0.

But if ‖hϕ‖e = 0, by Theorem 4

distL∞(ϕ,L∞+ C) = 0.

So ϕ ∈ L∞+ C.

If ϕ ∈ L∞+ C, then

distL∞(ϕ,L∞+ C) = 0.

By Theorem 4 ‖hϕ‖e = 0, or hϕ is compact.
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Proof of Theorem 4

• In the classic (one variable) setting Ne-

hari’s Theorem can be stated as

‖Hϕ‖ = distL∞(ϕ,H∞(D)).

• We need something like this in the two

variable setting.

In two variables, Theorem 1 (Nehari’s

Theorem) can be restated as:

‖hϕ‖ ≈ distL∞(ϕ,L∞(T2))

Proof of this fact follows immediately

from Theorem 1 (work of Ferguson and

Lacey).
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We are also going to need a characteriza-

tion of the space L∞+ C.

Similar to the one-variable case we have the

following theorem.

Theorem 5 L∞ + C is a closed subspace

of L∞(T2), and moreover

L∞+ C = closL∞

 ∞⋃
n,m=0

zn1z
m
2 L

∞(T2)

 .

The above theorem will follow from

Theorem 6 Let CL(T2) := L∞(T2)∩C(T2)

and ϕ ∈ C(T2). Then

distL∞(ϕ,L∞) = distL∞(ϕ,CL).
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Proof of Theorem 6

• CL(T2) ⊂ L∞(T2) implies

distL∞(ϕ,L∞) ≤ distL∞(ϕ,CL).

• The other inequality follows from the

same argument as in one variable.

Let ψ ∈ L∞(T2).

Using the harmonic extension of func-

tions to the bi-disk we have

‖ϕ− ψ‖∞ ≥ lim
r→1

‖(ϕ− ψ)r‖∞
≥ lim

r→1
(‖ϕ− ψr‖∞ − ‖ϕ− ϕr‖∞)

= lim
r→1

‖ϕ− ψr‖∞.

This gives

distL∞(ϕ,L∞) ≥ distL∞(ϕ,CL).
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Proof of Theorem 5

• Theorem 6 gives that C/CL has an iso-
metric embedding in L∞/L∞. So we
may view it as a closed subspace of
L∞/L∞.

• Let ρ : L∞ → L∞/L∞ be the natural
quotient map. Then

L∞+ C = ρ−1(C/CL)

is closed.

• Finally,

L∞+C = closL∞
(
∪∞n,m=0z

n
1z
m
2 L

∞(T2)
)
,

because continuous functions on T2 can
be uniformly approximated by polyno-
mials in z1, z2 and their conjugates.

• The proof is similar to the correspond-
ing fact in the one variable case. Namely,

H∞+ C = closL∞ (∪∞n=0z
nH∞) .
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Proof of Theorem 4

• Let K : H2(D2)→ H2
−,−(D2) be a com-

pact operator.

We want to estimate ‖hϕ−K‖ from be-

low.

• Let Sj be multiplication by the variable

zj. Note Sj is a contraction. Then

‖hϕ −K‖ ≥ ‖(hϕ −K)Sn1S
m
2 ‖

≥ ‖hϕSn1S
m
2 ‖ − ‖KS

n
1S

m
2 ‖

= ‖hzn1zm2 ϕ‖ − ‖KS
n
1S

m
2 ‖

& distL∞(ϕ, zn1z
m
2 L

∞)− ‖KSn1S
m
2 ‖

≥ distL∞(ϕ,L∞+ C)− ‖KSn1S
m
2 ‖.

• Used the fact that ‖hϕ‖ ≈ distL∞(ϕ,L∞).

• Also used that L∞+C is a closed sub-

space.
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Proof of Theorem 4 Continued

We need one Lemma

Lemma 7 Let K be a compact operator
from H2(D2) to H2

−,−(D2). Then

‖KSn1S
m
2 ‖ → 0

as n,m→∞.

• Implies ‖hϕ−K‖ & distL∞(ϕ,L∞+C) for
any compact operator K. Which gives

‖hϕ‖e & distL∞(ϕ,L∞+ C).

Now we need to estimate ‖hϕ − K‖ from
above.

• Let g be a trigonometric polynomial.
Then hg is a compact (finite rank) op-
erator. So

‖hϕ‖e ≤ inf
g∈C

‖hϕ − hg‖ = inf
g∈C

‖hϕ−g‖.
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Proof of Theorem 4 Continued

• By restating Nehari’s Theorem we have

‖hϕ‖e . inf
g∈C,ψ∈L∞

‖ϕ− g − ψ‖∞

. distL∞(ϕ,L∞+ C).
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