Multi-Parameter Riesz Commutators

Brett D. Wick

Vanderbilt University
Department of Mathematics

Sixth Prairie Analysis Seminar
University of Kansas
October 14th, 2006

This is joint work with:

Stefanie Petermichl University of Texas at Austin

Michael T. Lacey
Georgia Institute of Technology

Jill C. Pipher
Brown University

Hilbert and Riesz Transforms

- The Hilbert Transform is defined by

$$
H(f)(x):=\frac{1}{\pi} \int_{\mathbb{R}} f(y) \frac{1}{x-y} d y=f *\left(\frac{1}{\pi y}\right)(x)
$$

- Which can be viewed on the Fourier Transform side as:

$$
\widehat{H(f)}(\xi):=-i \operatorname{sgn}(\xi) \hat{f}(\xi)
$$

- The Riesz Transforms are the n-dimensional generalizations of the Hilbert Transform. For each $1 \leq j \leq n$ we have

$$
R_{j}(f)(x):=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \int_{\mathbb{R}^{n}} f(y) \frac{x_{j}-y_{j}}{|x-y|^{n+1}} d y=f *\left(\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \frac{y_{j}}{|y|^{n+1}}\right)(x)
$$

- On the frequency side:

$$
\widehat{R_{j}(f)}(\xi)=-i \frac{\xi_{j}}{|\xi|} \hat{f}(\xi)
$$

A Wavelet Basis for $L^{2}\left(\mathbb{R}^{n}\right)$

- Let $h^{1}(x):=\mathbf{1}_{[0,1)}(x)$ and let $h^{0}(x):=-\mathbf{1}_{[0,1 / 2)}(x)+\mathbf{1}_{[1 / 2,1)}(x)$

$$
h^{1}(x) \quad h^{0}(x)
$$

- Let

$$
\mathcal{D}_{n}:=\left\{2^{-k}\left(j+[0,1)^{n}\right): j \in \mathbb{Z}^{n}, k \in \mathbb{Z}\right\}
$$

i.e., the usual dyadic grid in \mathbb{R}^{n}.

A Wavelet Basis for $L^{2}\left(\mathbb{R}^{n}\right)$

- Let $\operatorname{Tr}_{y}(f)(x):=f(x-y)$ and $\operatorname{Dil}_{t}(f)(x):=t^{-n / 2} f\left(\frac{x}{t}\right)$.
- Define

$$
\operatorname{Sig}^{n}:=\left\{\epsilon=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right): \epsilon_{i} \in\{0,1\}\right\} \backslash\{(1, \ldots, 1)\} .
$$

- For $Q \in \mathcal{D}_{n}$ and $\epsilon \in \operatorname{Sig}^{n}$ set

$$
h_{Q}^{\epsilon}(x):=\prod_{j=1}^{n} \operatorname{Tr}_{c(Q)} \operatorname{Dil}_{|Q|} h^{\epsilon_{j}}\left(x_{j}\right)
$$

- $\left\{h_{Q}^{\epsilon}: Q \in \mathcal{D}_{n}, \epsilon \in \operatorname{Sig}^{n}\right\}$ is the Haar wavelet basis for $L^{2}\left(\mathbb{R}^{n}\right)$.

The Space $B M O\left(\mathbb{R}^{n}\right)$

Definition

$$
\|b\|_{B M O}:=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right|^{2} d x
$$

Theorem (C. Fefferman (1971))

The dual of $H^{1}\left(\mathbb{R}^{n}\right)$ is $B M O\left(\mathbb{R}^{n}\right)$, i.e., $\left(H^{1}\left(\mathbb{R}^{n}\right)\right)^{*}=B M O\left(\mathbb{R}^{n}\right)$.

Definition (Square Function Characterization)

A function is in (dyadic) $B M O\left(\mathbb{R}^{n}\right)$ if and only if for any (dyadic) cube Q^{\prime} we have a constant C such that:

$$
\frac{1}{\left|Q^{\prime}\right|} \sum_{Q \subset Q^{\prime}} \sum_{\epsilon \in \mathrm{Sig}^{n}}\left|\left\langle b, h_{Q}^{\epsilon}\right\rangle\right|^{2} \leq C
$$

BMO and Riesz Transforms

For each $j=1, \ldots, n$ define the following commutator operator on $L^{2}\left(\mathbb{R}^{n}\right)$:

$$
\left[b, R_{j}\right](f)(x):=b(x) R_{j}(f)(x)-R_{j}(b f)(x)
$$

Theorem (Coifman, Rochberg, and Weiss (1976))

Let $b \in B M O\left(\mathbb{R}^{n}\right)$, then for $j=1, \ldots, n$

$$
\left\|\left[b, R_{j}\right]\right\|_{2 \rightarrow 2} \lesssim\|b\|_{B M O\left(\mathbb{R}^{n}\right)} .
$$

If $\left\|\left[b, R_{j}\right]\right\|_{2 \rightarrow 2}<+\infty$ for $j=1, \ldots, n$, then

$$
\|b\|_{B M O\left(\mathbb{R}^{n}\right)} \lesssim \max \left\|\left[b, R_{j}\right]\right\|_{2 \rightarrow 2}
$$

Gives $B M O\left(\mathbb{R}^{n}\right)$ as a space of operators on $L^{2}\left(\mathbb{R}^{n}\right)$.

Product Spaces

- We are concerned with product spaces:

$$
\mathbb{R}^{\vec{n}}=\mathbb{R}^{n_{1}} \otimes \cdots \otimes \mathbb{R}^{n_{t}}=\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}
$$

- $\mathcal{D}^{\vec{n}}:=\otimes_{s=1}^{t} \mathcal{D}_{n_{s}}$ is the tensor product of the usual dyadic grids in $\mathbb{R}^{n_{s}}$. Any $R \in \mathcal{D}^{\vec{n}}$ is of the form

$$
R=Q_{1} \otimes \cdots \otimes Q_{t}
$$

with each Q_{s} a dyadic cube in $\mathbb{R}^{n_{s}}$.
Also, let $\operatorname{Sig}^{\vec{n}}:=\left\{\vec{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{t}\right): \epsilon_{s} \in \operatorname{Sig}^{n_{s}}\right\}$

Tensor Product Wavelet Basis in $L^{2}\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$

- Take the Haar wavelet basis described earlier in $\mathbb{R}^{n_{s}}$, i.e.,

$$
\left\{h_{Q_{s}}^{\epsilon_{s}}: Q_{s} \in \mathcal{D}_{n_{s}}, \epsilon_{s} \in \operatorname{Sig}^{n_{s}}\right\}
$$

For each $R \in \mathcal{D}^{\vec{n}}$ and $\vec{\epsilon} \in \operatorname{Sig}^{\vec{n}}$ define the following function:

$$
h_{R}^{\vec{\epsilon}}\left(x_{1}, \ldots, x_{t}\right):=\prod_{s=1}^{t} h_{Q_{s}}^{\epsilon_{s}}\left(x_{s}\right)
$$

- $\left\{h_{R}^{\vec{\epsilon}}: R \in \mathcal{D}^{\vec{n}}, \vec{\epsilon} \in \operatorname{Sig}^{\vec{n}}\right\}$ is a wavelet basis for $L^{2}\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$.

Product $B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$

A Reasonable Guess:

Product BMO?

A function is in $B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$ if and only if for any rectangle S in $\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}$ there exists a constant C such that:

$$
\frac{1}{|S|} \sum_{R \subset S} \sum_{\vec{\epsilon} \in \mathrm{Sig}^{\vec{n}}}\left|\left\langle b, h_{R}^{\vec{\epsilon}}\right\rangle\right|^{2} \leq C
$$

THIS IS WRONG!!!

Defines a space called "Rectangular" BMO, which is larger than product $B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$. (Counter-example do to Carleson). Instead of rectangles, one must use arbitrary open sets in $\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}$.

Product $B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$

Correct Definition:

Definition (Product BMO)

A function b is in $B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$ if and only if for any open set U in $\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}$ with finite measure there exists a constant C such that:

$$
\frac{1}{|U|} \sum_{R \subset U} \sum_{\vec{\epsilon} \in \operatorname{Sig}^{\vec{\eta}}}\left|\left\langle b, h_{R}^{\vec{\epsilon}}\right\rangle\right|^{2} \leq C .
$$

How do you check on every open set?

Theorem (S.-Y.A. Chang, R. Fefferman (1980))
The dual of product $H^{1}\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$ is product $B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$, i.e., $\left(H^{1}\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)\right)^{*}=B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$.

$B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$ and Iterated Commutators

- Additional cancellation is present in the multi-parameter setting and this can still be studied via commutators.
- We need iterated (nested) commutators:

Let $R_{s, j_{s}}$ denote the j_{s} th Riesz transform taken in the s parameter variable.
For $s=1, \ldots, t$ and for $1 \leq j_{s} \leq n_{s}$ we consider the following iterated (nested) commutators on $L^{2}\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$:

$$
\left.\left.\left[\cdots\left[b, R_{1, j_{1}}\right], R_{2, j_{2}}\right], \cdots\right], R_{t, j_{t}}\right](f)(x)
$$

2 Parameter Iterated Commutator in $\mathbb{R}^{n_{1}} \otimes \mathbb{R}^{n_{2}}$

For $s=1,2$ and $1 \leq j_{s} \leq n_{s}$ the iterated commutator is:

$$
\begin{aligned}
{\left[\left[b, R_{1, j_{1}}\right], R_{2, j_{2}}\right](f)(x):=} & b(x) R_{1, j_{1}} R_{2, j_{2}}(f)(x)-R_{1, j_{1}}(b)(x) R_{2, j_{2}}(f)(x) \\
& -R_{2, j_{2}}(b)(x) R_{1, j_{1}}(f)(x)+R_{1, j_{1}} R_{2, j_{2}}(b f)(x)
\end{aligned}
$$

$B M O\left(\otimes_{s=1}^{t} \mathbb{R}\right)$ as an Operator Space

Theorem (C. Sadosky and S. Ferguson (2001))

Let $b \in B M O\left(\otimes_{s=1}^{t} \mathbb{R}\right)$, then

$$
\left.\left.\left.\|\left[\cdots\left[b, H_{1}\right], H_{2}\right], \cdots\right], H_{t}\right]\right]\left\|_{2 \rightarrow 2} \lesssim\right\| b \|_{B M O\left(\otimes_{s=1}^{t} \mathbb{R}\right)} .
$$

Theorem (M. Lacey and S. Ferguson (2002), M. Lacey and E. Terwilleger (2004))

$$
\text { If } \left.\left.\|\left[\cdots\left[b, H_{1}\right], H_{2}\right], \cdots\right], H_{t}\right] \|_{2 \rightarrow 2}<+\infty \text {, then }
$$

$$
\left.\left.\|b\|_{B M O\left(\otimes_{s=1}^{t} \mathbb{R}\right)} \lesssim \|\left[\cdots\left[b, H_{1}\right], H_{2}\right], \cdots\right], H_{t}\right] \|_{2 \rightarrow 2} .
$$

Restatement of Nehari's Theorem for little Hankels on the polydisc. KEY POINT: Provides a useful characterization of $B M O\left(\otimes_{s=1}^{t} \mathbb{R}\right)$.

Main Result

It is possible to generalize the Coifman, Rochberg, Weiss result to the product setting, and the Ferguson Lacey, Lacey, Terwilleger results to more general Euclidean spaces:

Theorem (S. Petermichl, J. Pipher, M. Lacey, BW)
Let $b \in B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$, then for $s=1, \ldots, t$, and all $1 \leq j_{s} \leq n_{s}$

$$
\left.\left.\|\left[\cdots\left[b, R_{1, j_{1}}\right], R_{2, j_{2}}\right], \cdots\right], R_{t, j_{t}}\right]\left\|_{2 \rightarrow 2} \lesssim\right\| b \|_{B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)}
$$

If $\left.\left.\|\left[\cdots\left[b, R_{1, j_{1}}\right], R_{2, j_{2}}\right], \cdots\right], R_{t, j_{t}}\right] \|_{2 \rightarrow 2}<+\infty$ for all $s=1, \ldots, t$ and all $1 \leq j_{s} \leq n_{s}$, then

$$
\left.\left.\|b\|_{B M O\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)} \lesssim \max \|\left[\cdots\left[b, R_{1, j_{1}}\right], R_{2, j_{2}}\right], \cdots\right], R_{t, j_{t}}\right] \|_{2 \rightarrow 2}
$$

The Upper Bound

- Main Idea: Express the commutator as a sum of paraproducts.
- Use the multi-parameter paraproducts of Muscalu, Pipher, Tao and Thiele.

$$
\mathrm{B}\left(f_{1}, f_{2}\right):=\sum_{R \in \mathcal{D}^{\vec{n}}} \frac{\left\langle f_{1} \varphi_{1, R}\right\rangle}{|R|^{1 / 2}}\left\langle f_{2}, \varphi_{2, R}\right\rangle \varphi_{3, R} .
$$

Key Point:

$$
\mathrm{B}: B M O \times L^{p} \rightarrow L^{p}
$$

- Relatively straightforward, though technical computations and estimates give the result.

The Lower Bound

- Again rely upon paraproducts.
- Define a space reduced BMO, which plays the role of rectangle BMO. This space is "related" to product BMO via Journé's Lemma.
- If the commutators are bounded, then we have an initial weak lower bound in terms of reduced BMO. We want to boot-strap this lower bound to a lower bound in terms of product BMO.
- There are difficulties:
- The approach used in Lacey-Ferguson and Lacey-Terwilleger depends upon the relationship between the Hilbert transform and projections.
- We need to do something similar in the Hilbert transform case. To accomplish this we perform a reduction to deal with "nice" multipliers.
- With this reduction it is possible to implement the general scheme established in the papers Lacey-Ferguson and Lacey-Terwilleger.

Other Problems Considered

- The theorem also implies a weak factorization result for the product Hardy space $H^{1}\left(\otimes_{s=1}^{t} \mathbb{R}^{n_{s}}\right)$ in terms of L^{2} functions and Riesz transforms.
- Commutators in One-Parameter have connections to Div-Curl Lemmas.
Let E be a divergence free vector field, and B be a curl free vector field, then

$$
E \cdot B \in H^{1}\left(\mathbb{R}^{n}\right)
$$

Our theorem implies a new Div-Curl Lemma, but one which allows divergence/curl free vector fields in each variable separately.

- Connections with Hankel/Toeplitz operators on weighted Bergman spaces in several complex variables, and the mapping properties of little Hankels on different Hardy spaces.

