Multi-Parameter Riesz Commutators

Brett D. Wick

Vanderbilt University Department of Mathematics

SouthEastern Analysis Meeting (SEAM) XXII
University of Florida
March 3rd, 2006

This is joint work with:

Stefanie Petermichl University of Texas at Austin

Michael T. Lacey Georgia Institute of Technology

Jill C. Pipher Brown University

Hilbert and Riesz Transforms

The Hilbert Transform is defined by

$$H(f)(x) := \frac{1}{\pi} \int_{\mathbb{R}} f(y) \frac{1}{x-y} dy = f * \left(\frac{1}{\pi y}\right)(x).$$

Which can be viewed on the Fourier Transform side as:

$$\widehat{H(f)}(\xi) := -i\operatorname{sgn}(\xi)\widehat{f}(\xi).$$

• The Riesz Transforms are the n-dimensional generalizations of the Hilbert Transform. For each $1 \le j \le n$ we have

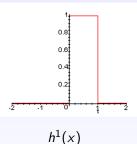
$$R_j(f)(x) := \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \int_{\mathbb{R}^n} f(y) \frac{x_j - y_j}{|x - y|^{n+1}} dy = f * \left(\frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \frac{y_j}{|y|^{n+1}}\right) (x).$$

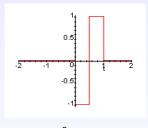
• On the frequency side:

$$\widehat{R_j(f)}(\xi) = -i\frac{\xi_j}{|\xi|}\widehat{f}(\xi).$$

A Wavelet Basis for $L^2(\mathbb{R}^n)$

• Let $h^1(x) := \mathbf{1}_{[0,1)}(x)$ and let $h^0(x) := -\mathbf{1}_{[0,1/2)}(x) + \mathbf{1}_{[1/2,1)}(x)$





$$h^0(x)$$

Let

$$\mathcal{D}_n := \{2^{-k}(j + [0,1)^n) : j \in \mathbb{Z}^n, k \in \mathbb{Z}\}$$

i.e., the usual dyadic grid in \mathbb{R}^n .

A Wavelet Basis for $L^2(\mathbb{R}^n)$

- Let $Tr_y(f)(x) := f(x y)$ and $Dil_t(f)(x) := t^{-n/2}f(\frac{x}{t})$.
- Define

$$\mathsf{Sig}^n := \{ \epsilon = (\epsilon_1, \dots, \epsilon_n) : \epsilon_i \in \{0, 1\} \} \setminus \{(1, \dots, 1)\}.$$

• For $Q \in \mathcal{D}_n$ and $\epsilon \in \mathsf{Sig}^n$ set

$$h_Q^{\epsilon}(x) := \prod_{i=1}^n \mathsf{Tr}_{c(Q)} \mathsf{Dil}_{|Q|} h^{\epsilon_j}(x_j).$$

• $\{h_Q^{\epsilon}: Q \in \mathcal{D}_n, \epsilon \in \mathsf{Sig}^n\}$ is the Haar wavelet basis for $L^2(\mathbb{R}^n)$.

The Space $BMO(\mathbb{R}^n)$

Definition

$$||b||_{BMO} := \sup_{Q} \frac{1}{|Q|} \int_{Q} |f(x) - f_{Q}|^{2} dx$$

Theorem (C. Fefferman (1971))

The dual of $H^1(\mathbb{R}^n)$ is $BMO(\mathbb{R}^n)$, i.e., $(H^1(\mathbb{R}^n))^* = BMO(\mathbb{R}^n)$.

Definition (Square Function Characterization)

A function is in (dyadic) $BMO(\mathbb{R}^n)$ if and only if for any (dyadic) cube Q' we have a constant C such that:

$$\frac{1}{|Q'|} \sum_{Q \subset Q'} \sum_{\epsilon \in \mathsf{Sig}^n} |\langle b, h_Q^{\epsilon} \rangle|^2 \leq C.$$

BMO and Riesz Transforms

For each j = 1, ..., n define the following commutator operator on $L^2(\mathbb{R}^n)$:

$$[b, R_j](f)(x) := b(x)R_j(f)(x) - R_j(bf)(x).$$

Theorem (Coifman, Rochberg, and Weiss (1976))

Let $b \in BMO(\mathbb{R}^n)$, then for j = 1, ..., n

$$||[b,R_j]||_{2\to 2}\lesssim ||b||_{BMO(\mathbb{R}^n)}.$$

If
$$\|[b,R_j]\|_{2 o 2}<+\infty$$
 for $j=1,\ldots,$ n, then

$$||b||_{BMO(\mathbb{R}^n)} \lesssim \max ||[b,R_j]||_{2\rightarrow 2}.$$

Gives $BMO(\mathbb{R}^n)$ as an "operator space".

Product Spaces

• We are concerned with product spaces:

$$\mathbb{R}^{\vec{n}} = \mathbb{R}^{n_1} \otimes \cdots \otimes \mathbb{R}^{n_t} = \otimes_{s=1}^t \mathbb{R}^{n_s}$$

• $\mathcal{D}^{\vec{n}} := \otimes_{s=1}^t \mathcal{D}_{n_s}$ is the tensor product of the usual dyadic grids in \mathbb{R}^{n_s} . Any $R \in \mathcal{D}^{\vec{n}}$ is of the form

$$R = Q_1 \otimes \cdots \otimes Q_t$$

with each Q_s a dyadic cube in \mathbb{R}^{n_s} .

Also, let
$$\mathsf{Sig}^{\vec{n}} := \{\vec{\epsilon} = (\epsilon_1, \dots, \epsilon_t) : \epsilon_s \in \mathsf{Sig}^{n_s}\}$$

Tensor Product Wavelet Basis in $L^2(\otimes_{s=1}^t \mathbb{R}^{n_s})$

• Take the Haar wavelet basis described earlier in \mathbb{R}^{n_s} , i.e.,

$$\{h_{Q_s}^{\epsilon_s}: Q_s \in \mathcal{D}_{n_s}, \epsilon_s \in \mathsf{Sig}^{n_s}\}$$

For each $R \in \mathcal{D}^{\vec{n}}$ and $\vec{\epsilon} \in \operatorname{Sig}^{\vec{n}}$ define the following function:

$$h_R^{\vec{\epsilon}}(x_1,\ldots,x_t):=\prod_{s=1}^t h_{Q_s}^{\epsilon_s}(x_s)$$

• $\{h_R^{\vec{\epsilon}}: R \in \mathcal{D}^{\vec{n}}, \vec{\epsilon} \in \mathsf{Sig}^{\vec{n}}\}$ is a wavelet basis for $L^2(\otimes_{s=1}^t \mathbb{R}^{n_s})$.

Product $BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$

A Reasonable Guess:

Product BMO?

A function is in $BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$ if and only if for any rectangle S in $\otimes_{s=1}^t \mathbb{R}^{n_s}$ there exists a constant C such that:

$$\frac{1}{|S|} \sum_{R \subset S} \sum_{\vec{r} \in \mathsf{Sig}^{\vec{n}}} |\langle b, h_R^{\vec{\epsilon}} \rangle|^2 \leq C$$

THIS IS WRONG!!!

Defines a space called "Rectangular" BMO, which is larger than product $BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$. (Counter-example do to Carleson).

Instead of rectangles, one must use arbitrary open sets in $\otimes_{s=1}^t \mathbb{R}^{n_s}$.

Product $BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$

Correct Definition:

Definition (Product BMO)

A function b is in $BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$ if and only if for any **open** set U in $\otimes_{s=1}^t \mathbb{R}^{n_s}$ with finite measure there exists a constant C such that:

$$\frac{1}{|U|} \sum_{R \subset U} \sum_{\vec{\epsilon} \in \mathsf{Sig}^{\vec{n}}} |\langle b, h_R^{\vec{\epsilon}} \rangle|^2 \leq C.$$

How do you check on every open set?

Theorem (S.-Y.A. Chang, R. Fefferman (1980))

The dual of product $H^1(\otimes_{s=1}^t \mathbb{R}^{n_s})$ is product $BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$, i.e., $(H^1(\otimes_{s=1}^t \mathbb{R}^{n_s}))^* = BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$.

$BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$ and Iterated Commutators

- Additional cancellation is present in the multi-parameter setting and this can still be studied via commutators.
- We need iterated (nested) commutators: Let R_{s,j_s} denote the j_s th Riesz transform taken in the s parameter variable.

For $s=1,\ldots,t$ and for $1\leq j_s\leq n_s$ we consider the following iterated (nested) commutators on $L^2(\otimes_{s=1}^t\mathbb{R}^{n_s})$:

$$[\cdots [b, R_{1,j_1}], R_{2,j_2}], \cdots], R_{t,j_t}](f)(x)$$

2 Parameter Iterated Commutator in $\mathbb{R}^{n_1} \otimes \mathbb{R}^{n_2}$

For s = 1, 2 and $1 \le j_s \le n_s$ the iterated commutator is:

$$[[b, R_{1,j_1}], R_{2,j_2}](f)(x) := b(x)R_{1,j_1}R_{2,j_2}(f)(x) - R_{1,j_1}(b)(x)R_{2,j_2}(f)(x) - R_{2,j_2}(b)(x)R_{1,j_1}(f)(x) + R_{1,j_1}R_{2,j_2}(bf)(x)$$

$BMO(\otimes_{s=1}^t \mathbb{R})$ as an Operator Space

Theorem (C. Sadosky and S. Ferguson (2001))

Let
$$b \in BMO(\otimes_{s=1}^t \mathbb{R})$$
, then

$$\|[\cdots[b, H_1], H_2], \cdots], H_t]\|_{2 \to 2} \lesssim \|b\|_{BMO(\otimes_{s=1}^t \mathbb{R})}.$$

Theorem (M. Lacey and S. Ferguson (2002), M. Lacey and E. Terwilleger (2004))

If
$$\|[\cdots[b, H_1], H_2], \cdots], H_t]\|_{2 \to 2} < +\infty$$
, then
$$\|b\|_{BMO(\bigotimes_{t=1}^t, \mathbb{R})} \lesssim \|[\cdots[b, H_1], H_2], \cdots], H_t]\|_{2 \to 2}.$$

Restatement of Nehari's Theorem for little Hankels on the polydisc. KEY POINT: Provides a useful characterization of $BMO(\bigotimes_{s=1}^{t}\mathbb{R})$.

Main Result

It is possible to generalize the Coifman, Rochberg, Weiss result to the product setting:

Theorem (S. Petermichl, J. Pipher, M. Lacey, BW)

Let
$$b \in BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$$
, then for $s=1,\ldots,t$, and all $1 \leq j_s \leq n_s$

$$\|[\cdots[b,R_{1,j_1}],R_{2,j_2}],\cdots],R_{t,j_t}]\|_{2\to 2}\lesssim \|b\|_{BMO(\otimes_{s=1}^t\mathbb{R}^{n_s})}.$$

If
$$\|[\cdots[b, R_{1,j_1}], R_{2,j_2}], \cdots], R_{t,j_t}]\|_{2\to 2} < +\infty$$
 for all $s=1,\ldots,t$ and all $1 \le j_s \le n_s$, then

$$||b||_{BMO(\bigotimes_{s=1}^t \mathbb{R}^{n_s})} \lesssim \max ||[\cdots [b, R_{1,j_1}], R_{2,j_2}], \cdots], R_{t,j_t}]||_{2 \to 2}.$$

Riesz Transforms and Dyadic Shifts

- The Riesz transforms can be recovered by an averaging of certain operators which map Haar functions to themselves (Haar shifts).
- For the dyadic grid \mathcal{D} in \mathbb{R}^n let $\sigma: \mathcal{D} \to \mathcal{D}$ with $2^n |\sigma(Q)| = |Q|$.
- Use the same notation for a map $\sigma: \operatorname{Sig}^n \to \operatorname{Sig}^n$.
- Let

$$\coprod h_Q^{\varepsilon} := h_{\sigma(Q)}^{\sigma(\varepsilon)}.$$

Theorem (S. Petermichl, S. Treil, A. Volberg (2002))

- The operator \coprod is a bounded linear operator on $L^p(\mathbb{R}^n)$ for all 1 .
- The Riesz transforms are in the convex hull of the operators III, the convex hull taken with respect to the strong operator topology.

Reduction to Commutators with Haar Shifts

We construct the Haar shifts \coprod_s defined on $L^2(\mathbb{R}^{n_s})$ for each $s=1,\ldots,t$.

Proposition

The operator

$$\vec{\coprod} := \coprod_1 \otimes \cdots \otimes \coprod_t$$

extends to a bounded linear operator on $L^p(\mathbb{R}^{\vec{n}})$ for all 1 .

To prove the upper bound in our theorem, it is sufficient to deduce the estimate for the operators:

$$\mathsf{C}_{\vec{\Pi}}(b,f) := [\cdots[b, \coprod_1], \cdots], \coprod_t](f)$$

viewed as acting on $L^2(\mathbb{R}^{\vec{n}})$.

Multi-Parameter Paraproducts

Consider the bilinear operators, (multi-parameter paraproducts):

$$\Pi(f_1,f_2) := \sum_{R \in \mathcal{D}^{\vec{n}}} \epsilon_R \langle f_1, h_R^{\vec{\varepsilon}_1} \rangle \langle f_2, h_R^{\vec{\varepsilon}_2} \rangle \frac{h_R^{\vec{\varepsilon}_3}}{\sqrt{|R|}}.$$

Theorem (J.-L. Journé (1985), C. Muscalu, J. Pipher, T. Tao, and C. Thiele (2003), M. Lacey and J. Metcalfe (2004))

If for all $1 \le s \le t$, there is at most one choice of j=1,2,3 with $\varepsilon_{j,s}=\vec{1}$, then the operator B satisfies

$$\Pi: L^p \times L^q \longrightarrow L^r$$
, $1 < p, q < \infty$, $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.

If in addition, $\vec{\varepsilon_1} \neq \vec{1}$, we will have the estimates

$$\Pi : BMO \times L^p \to L^p$$
, $1 .$

Main Idea in the Proof of the Upper Bound

We consider the one-parameter setting first:

$$\mathsf{C}_{\mathrm{III}}(b,f) := [b,\mathrm{III}](f) = \sum_{Q,Q' \in \mathcal{D}} \sum_{arepsilon, c'
eq ec{1}} \langle b, h_{Q'}^{arepsilon'}
angle \langle f, h_{Q}^{arepsilon}
angle [h_{Q'}^{arepsilon'} \mathrm{III}] h_{Q}^{arepsilon}.$$

Compute the following:

$$[h_{Q'}^{\varepsilon'}, \coprod] h_Q^{\varepsilon}$$

$$[h_{Q'}^{\varepsilon'}, \text{III}] h_Q^{\varepsilon} = \begin{cases} 0 & Q \cap Q' \neq \emptyset, \ Q \subsetneq Q' \\ \pm |Q|^{-1/2} h_{\sigma(Q)}^{\sigma(\varepsilon)} - \text{III} h_Q^{\varepsilon'} h_Q^{\varepsilon} & Q = Q' \\ |Q|^{-1/2} \left(\pm h_{\sigma(Q)}^{\varepsilon'} \pm h_{\sigma^2(Q)}^{\sigma(\varepsilon')} \right) & Q' = \sigma(Q) \\ \pm |Q|^{-1/2} h_{\sigma(Q')}^{\sigma(\varepsilon')} & 2^n |Q'| = Q, \ Q' \neq \sigma(Q) \\ |Q|^{-1/2} \left(\pm h_{Q'}^{\varepsilon'} \pm h_{\sigma(Q')}^{\sigma(\varepsilon')} \right) & 2^n |Q'| < |Q| \ . \end{cases}$$

Main Idea in the Proof of the Upper Bound

The computation demonstrates the following:

- The first line captures the essential cancellation in BMO and commutators.
- $C_{III}(b, f)$ is a finite linear combination of terms of the form

$$\coprod \Pi(b, f), \qquad \Pi(b, \coprod f)$$

for appropriate choices of \coprod and paraproducts Π .

• These are good paraproducts. We can apply the previous theorem, and $C_{\mathrm{III}}(b,f)$ will be bounded on $L^2(\mathbb{R}^n)$ with norm controlled by $BMO(\mathbb{R}^n)$. This in turn implies C(b,f) is bounded.

Proof of the Upper Bound in the Multi-Parameter Setting

- To prove the upper bound in the multi-parameter setting, we "tensor" the previous argument.
- ullet For the operators the Haar shifts ${
 m III}_s$, we compute directly

$$[\cdots[h_R^{\vec{\varepsilon}}, \coprod_1], \cdots], \coprod_t]h_{R'}^{\vec{\varepsilon'}}$$

- The result is a tensor product of the one-parameter answer.
- We can write the commutator $C_{\vec{III}}(b,f)$ as a finite linear combination of terms

$$\vec{\coprod}\Pi(b,f), \qquad \Pi(b,\vec{\coprod}f)$$

for different choices of multi-parameter paraproduct Π and different choices of operator $\vec{\coprod}$.

• $C_{\vec{\Pi}}(b,f)$ will be bounded on $L^2(\mathbb{R}^{\vec{n}})$ with norm controlled by $BMO(\otimes_{s=1}^t \mathbb{R}^{n_s})$. Gives C(b,f) bounded with norm controlled by product BMO.

The Lower Bound

- We replace the Haar wavelet with the Meyer wavelet.
- Define a space reduced BMO, which plays the role of rectangle BMO.
 This space is "related" to product BMO via Journé's Lemma.
- If the commutators are bounded, then we have an initial weak lower bound in terms of reduced BMO. We want to boot-strap this lower bound to a lower bound in terms of product BMO.
- There are difficulties:
 - The approach used in Lacey-Ferguson and Lacey-Terwilleger depends upon the relationship between the Hilbert transform and projections.
 - We need to do something similar in the Hilbert transform case. To accomplish this we perform a reduction to deal with "nice" multipliers.
 - With this reduction it is possible to implement the general scheme established in the papers Lacey-Ferguson and Lacey-Terwilleger.

Other Problems Considered

- The theorem also implies a weak factorization result for the product Hardy space $H^1(\otimes_{s=1}^t \mathbb{R}^{n_s})$ in terms of L^2 functions and Riesz transforms.
- Commutators in One-Parameter have connections to Div-Curl Lemmas.

Let E be a divergence free vector field, and B be a curl free vector field, then

$$E \cdot B \in H^1(\mathbb{R}^n)$$

Our theorem implies a new Div-Curl Lemma, but one which allows divergence/curl free vector fields in each variable separately. Connections with partial differential equations.