Bounded Analytic Projections and the Corona Problem

Brett D. Wick
Vanderbilt University
Department of Mathematics

SEAM XXIII
University of Richmond
March 11th, 2007

Formulation of the Problem

- Let E and E_{*} be separable complex Hilbert spaces.
- Let Ω be a domain in \mathbb{C}^{n}.
- $H_{E}^{2}(\Omega)$ is the analytic Hardy space with values in the Hilbert space E.
- $H_{E_{*} \rightarrow E}^{\infty}(\Omega)$ is the collection of all bounded operator-valued functions.

$$
F(z): E_{*} \rightarrow E \text { and }\|F\|_{H_{E_{*} \rightarrow E}^{\infty}(\Omega)}:=\sup _{z \in \Omega}\|F(z)\|_{E_{*} \rightarrow E}
$$

Question (Operator Corona Problem)

Let $F \in H_{E_{*} \rightarrow E}^{\infty}(\Omega)$. Can we find, preferably local, necessary and sufficient conditions on F so that it has an analytic left inverse? Namely, what conditions imply the existence of a function $G \in H_{E \rightarrow E_{*}}^{\infty}(\Omega)$ such that

$$
G(z) F(z) \equiv 1 \quad \forall z \in \Omega .
$$

A simple necessary condition is:

$$
F^{*}(z) F(z) \geq \delta^{2} I \quad \forall z \in \Omega
$$

Connection to the Usual Corona Problem

Let $\Omega=\mathbb{D}$, the unit disc in the complex plane. The Operator Corona Problem is a more general question based on the following:

Question (Corona Problem)

Suppose that $f_{1}, \ldots, f_{n} \in H^{\infty}(\mathbb{D})$ with $\left\|f_{j}\right\|_{\infty} \leq 1$ and

$$
\sum_{j=1}^{n}\left|f_{j}(z)\right|^{2} \geq \delta^{2} \quad \forall z \in \mathbb{D}
$$

Do there exist $g_{j} \in H^{\infty}(\mathbb{D})$ such that

$$
\sum_{j=1}^{n} f_{j}(z) g_{j}(z) \equiv 1 \quad \forall z \in \mathbb{D} ?
$$

Take $F(z)=\left(f_{1}(z), \ldots, f_{n}(z)\right)^{T}$ in the Operator Corona Problem to recover this question.

Known Results

Let $\Omega=\mathbb{D}$, the unit disc in the complex plane.

- When $E_{*}=\mathbb{C}$ and $\operatorname{dim} E<\infty$.
- In 1962 Carleson demonstrated that the simple necessary condition is sufficient.
- In 1979 Wolff gave a simpler compact proof of Carleson's result.
- When $E_{*}=\mathbb{C}, \operatorname{dim} E=\infty$.
- Rosenblum, Tolokonnikov, and Uchiyama independently gave proofs.
- When $\operatorname{dim} E_{*}<\infty$ and $\operatorname{dim} E=\infty$. (Matrix Corona Problem)
- Fuhrmann and Vasyunin independently demonstrated this.
- When $\operatorname{dim} E=\operatorname{dim} E_{*}=\infty$. (Operator Corona Problem)
- In 1988 Treil constructed a counter example which indicates that the necessary condition is no longer sufficient.
- In 2004 he gave another construction which demonstrated the same phenomenon.
When $n \geq 2$ and $\Omega \subset \mathbb{C}^{n}$ (e.g. \mathbb{B} or \mathbb{D}^{n}) the H^{∞} Corona Problem is open.

Nikolski's Lemma

Lemma (Nikolski's Lemma)

Let $F \in H_{E_{*} \rightarrow E}^{\infty}(\Omega)$ satisfy

$$
F^{*}(z) F(z) \geq \delta^{2} I, \quad \forall z \in \Omega
$$

Then F is left invertible in $H_{E_{*} \rightarrow E}^{\infty}(\Omega)$ (i.e., there exists $G \in H_{E \rightarrow E_{*}}^{\infty}(\Omega)$ such that $G F \equiv I$) if and only if there exists a function $\mathcal{P} \in H_{E \rightarrow E}^{\infty}(\Omega)$ whose values are projections (not necessarily orthogonal) onto $F(z) E$ for all $z \in \Omega$.

Key Point: Finding a left inverse is replaced with constructing a bounded analytic projection-valued function that takes a prescribed range.

Proof of Nikolski's Lemma

" \Rightarrow "

- Let F be left invertible in $H_{E_{*} \rightarrow E}^{\infty}(\Omega)$, and let G any left inverse.
- Define $\mathcal{P} \in H_{E \rightarrow E}^{\infty}(\Omega)$ by

$$
\mathcal{P}(z)=F(z) G(z) .
$$

- Note that

$$
\mathcal{P}^{2}(z)=F(z) G(z) F(z) G(z)=F(z) / G(z)=F(z) G(z)=\mathcal{P}(z) .
$$

- The values of \mathcal{P} are projections.
- Since $G F \equiv I$

$$
G(z) E=E_{*} \quad \forall z \in \Omega
$$

- Therefore

$$
\mathcal{P}(z) E=F(z) G(z) E=F(z) E_{*} \quad \forall z \in \Omega
$$

- $\mathcal{P}(z)$ is a bounded analytic projection onto $F(z) E_{*}$.

Proof of Nikolski's Lemma

$" \Leftarrow "$

- Suppose there exists a projection-valued function $\mathcal{P} \in H_{E \rightarrow E}^{\infty}$, whose values are projections onto $F(z) E_{*}$ for all $z \in \Omega$.
- In a neighborhood of each point $z_{0} \in \Omega$ the function $F(z)$ has an analytic left inverse.
- Let $G_{0}: E \rightarrow E_{*}$ be a constant left inverse to the operator $F\left(z_{0}\right)$, i.e., $G_{0} F\left(z_{0}\right)=I$.
- Then

$$
G_{0} F(z)=I-G_{0}\left(F\left(z_{0}\right)-F(z)\right) .
$$

- The inverse of $G_{0} F(z)$ is given by the analytic function

$$
A(z):=\sum_{k=0}^{\infty}\left[G_{0} \cdot\left(F\left(z_{0}\right)-F(z)\right)\right]^{k}
$$

defined in a neighborhood of z_{0}.

- $A(z) G_{0}$ is a local analytic left inverse of $F(z)$.

Proof of Nikolski's Lemma

- For a fixed $z \in \Omega$ the operator $F(z)$ is left invertible.
- It is invertible if we treat it as an operator from E_{*} to $F(z) E_{*}$.
- Let $F^{\dagger}(z): F(z) E_{*} \rightarrow E_{*}$ be the inverse of the "restricted" $F(z)$.
- For any (not necessarily analytic) left inverse $\widetilde{G}(z)$ of $F(z)$

$$
\left.\widetilde{G}(z)\right|_{F(z) E_{*}}=\left.F^{\dagger}(z)\right|_{F(z) E_{*}} .
$$

- Since $\mathcal{P}(z)$ is a projection onto $F(z) E_{*}$, the function G,

$$
G(z):=F^{\dagger}(z) \mathcal{P}(z)
$$

is well defined and bounded since both F^{\dagger} and \mathcal{P} are bounded.

- We have $G(z) F(z) \equiv I$. It only remains to show that G is analytic.
- Fix $z_{0} \in \Omega$ and let $G_{z_{0}}(z)$ be a local analytic left inverse of $F(z)$ defined in a neighborhood of z_{0}.
- Then

$$
G(z)=F^{\dagger}(z) \mathcal{P}(z)=G_{z_{0}}(z)
$$

in a neighborhood of z_{0}. So $G(z)$ is analytic there.

- Since z_{0} is arbitrary, G is analytic in Ω.

The Corona Condition and Projections in \mathbb{D}

Let $F \in H_{E_{*} \rightarrow E}^{\infty}(\mathbb{D})$ be such that

$$
F^{*}(z) F(z) \geq \delta^{2} I \quad \forall z \in \mathbb{D}
$$

Set

$$
\Pi(z):=F(z)\left(F^{*}(z) F(z)\right)^{-1} F^{*}(z) \quad \forall z \in \mathbb{D} .
$$

Note that

$$
\begin{aligned}
\Pi(z) & =\Pi(z)^{*} \\
\Pi^{2}(z) & =F(z)\left(F^{*}(z) F(z)\right)^{-1} F^{*}(z) F(z)\left(F^{*}(z) F(z)\right)^{-1} F^{*}(z) \\
& =F(z)\left(F^{*}(z) F(z)\right)^{-1} F^{*}(z)=\Pi(z)
\end{aligned}
$$

The values of Π are orthogonal projections with $\operatorname{Ran} \Pi(z)=\operatorname{Ran} F(z)$. They are not analytic. Direct computation demonstrates that

$$
\Pi(z) \partial \Pi(z)=0 \quad \forall z \in \mathbb{D}
$$

Main Theorem

Theorem (S. Treil, BW)

Let $F \in H_{E_{*} \rightarrow E}^{\infty}(\mathbb{D})$ satisfy the Corona Condition $F^{*} F \geq \delta^{2} I$. Assume that there exists a bounded non-negative subharmonic function φ such that

$$
\Delta \varphi(z) \geq\|\partial \Pi(z)\|^{2} \quad z \in \mathbb{D}
$$

Then F has a holomorphic left inverse $G \in H_{E \rightarrow E_{*}}^{\infty}(\mathbb{D})$. Moreover, if the function φ satisfies

$$
0 \leq \varphi(z) \leq K \quad \forall z \in \mathbb{D}
$$

then one can find the left inverse G satisfying

$$
\|G\|_{\infty} \leq \delta^{-1}\left(1+2 \sqrt{\left(K e^{K+1}+1\right) K e^{K+1}}\right)
$$

The Corona Condition and Projections

Method of Proof:

- Construct a bounded analytic projection $\mathcal{P}(z)$ with

$$
\operatorname{Ran} \mathcal{P}(z)=\operatorname{Ran} F(z) \quad \forall z \in \mathbb{D} .
$$

- Apply Nikolski's Lemma to see that F is left invertible.
- Use the projection $\Pi(z)$ as an initial guess for $\mathcal{P}(z)$.
- Key Idea: Find some bounded operator-valued function $V(z): E \rightarrow E$ that we can use to "correct" the initial guess of $\Pi(z)$ to be holomorphic. Set $\mathcal{P}(z)=\Pi(z)-\Pi(z) V(z)(I-\Pi(z))$.

Lemma

Let Π be an orthogonal projection in a Hilbert space H. Then any projection \mathcal{P} onto $\operatorname{Ran} \Pi$ can be represented as

$$
\mathcal{P}=\Pi+\Pi V(I-\Pi),
$$

where $V \in B(H)$.

Finding V : Reduction to a Bilinear Form

- We want $\Pi-\Pi V(I-\Pi) \in H_{E \rightarrow E}^{\infty}(\mathbb{D})$.
- Follows from the equality:

$$
\int_{\mathbb{T}}\left\langle\Pi h_{1}, h_{2}\right\rangle d m=\int_{\mathbb{T}}\left\langle\Pi V(I-\Pi) h_{1}, h_{2}\right\rangle d m
$$

to hold for all $h_{1} \in H_{E}^{2}(\mathbb{D})$ and $h_{2} \in H_{E}^{2}(\mathbb{D})^{\perp}$.

- Apply Green's formula to the left hand side:

$$
\begin{aligned}
\int_{\mathbb{T}}\left\langle\Pi h_{1}, h_{2}\right\rangle d m & =\frac{4}{2 \pi} \int_{\mathbb{D}} \partial \bar{\partial}\left\langle\Pi h_{1}, h_{2}\right\rangle \log \left(\frac{1}{|z|}\right) d x d y \\
& =\int_{\mathbb{D}} \partial\left\langle\bar{\partial} \Pi h_{1}, h_{2}\right\rangle d \mu(z)
\end{aligned}
$$

Here we used the harmonic extensions of h_{1} and h_{2} with h_{2} being anti-analytic and $h_{2}(0)=0$.

Finding V : Reduction to a Bilinear Form

- ПӘП $=0$ implies $\Pi(\bar{\partial} П)(I-\Pi)=\bar{\partial} \Pi$.
- Define $\xi_{1}:=(I-\Pi) h_{1}$ and $\xi_{2}:=\Pi h_{2}$. Then

$$
\int_{\mathbb{D}} \partial\left\langle\bar{\partial} \Pi h_{1}, h_{2}\right\rangle d \mu(z)=\int_{\mathbb{D}} \partial\left\langle\bar{\partial} \Pi \xi_{1}, \xi_{2}\right\rangle d \mu(z):=L\left(\xi_{1}, \xi_{2}\right) .
$$

- The bilinear form L is a Hankel form, i.e., $L\left(z \xi_{1}, \xi_{2}\right)=L\left(\xi_{1}, \bar{z} \xi_{2}\right)$.
- Suppose that we are able to prove the estimate

$$
\left|L\left(\xi_{1}, \xi_{2}\right)\right| \leq C\left\|\xi_{1}\right\|_{2}\left\|\xi_{2}\right\|_{2}
$$

We then can find V by applying an appropriate version of Nehari's Theorem to the Hankel form L.

Finding V : Reduction to a Bilinear Form

- There exists an operator-valued function $V \in L_{E \rightarrow E}^{\infty}(\mathbb{T})$ such that

$$
L\left(\xi_{1}, \xi_{2}\right)=\int_{\mathbb{T}}\left\langle V \xi_{1}, \xi_{2}\right\rangle d m
$$

- Recalling the definition of L and ξ_{1}, ξ_{2} we get

$$
\int_{\mathbb{T}}\left\langle\Pi V(I-\Pi) h_{1}, h_{2}\right\rangle d m=L\left(\xi_{1}, \xi_{2}\right)=\int_{\mathbb{T}}\left\langle\Pi h_{1}, h_{2}\right\rangle d m
$$

for all $h_{1} \in H_{E}^{2}(\mathbb{D})$ and all $h_{2} \in H_{E}^{2}(\mathbb{D})^{\perp}$.

- Gives $\mathcal{P}(z):=\Pi(z)-\Pi(z) V(z)(I-\Pi(z)) \in H_{E \rightarrow E}^{\infty}(\mathbb{D})$.

Main Point: We only need to prove the estimate

$$
\left|L\left(\xi_{1}, \xi_{2}\right)\right| \leq C\left\|\xi_{1}\right\|_{2}\left\|\xi_{2}\right\|_{2}
$$

Estimating the Bilinear Form

- The Wolff approach to the Corona Problem depends upon demonstrating certain Embedding theorems. We will use a similar idea to show $\left|L\left(\xi_{1}, \xi_{2}\right)\right| \leq C\left\|\xi_{1}\right\|_{2}\left\|\xi_{2}\right\|_{2}$.
- First observe that

$$
\begin{aligned}
L\left(\xi_{1}, \xi_{2}\right) & =\int_{\mathbb{D}} \partial\left\langle\bar{\partial} \Pi \xi_{1}, \xi_{2}\right\rangle d \mu(z)=\int_{\mathbb{D}}\left\langle\partial \bar{\partial} \Pi \xi_{1}, \xi_{2}\right\rangle d \mu \\
& +\int_{\mathbb{D}}\left\langle\bar{\partial} \Pi \partial \xi_{1}, \xi_{2}\right\rangle d \mu+\int_{\mathbb{D}}\left\langle\bar{\partial} \Pi \xi_{1}, \bar{\partial} \xi_{2}\right\rangle d \mu \\
& :=\mathrm{I}+\mathrm{II}+\mathrm{III} .
\end{aligned}
$$

- $П \partial П=0$ implies that $I \equiv 0$.
- II and III are symmetric. Only need to estimate one of them.

The Embedding Theorem

Lemma (Embedding Theorem for Holomorphic Vector Bundles)

Let φ be a non-negative bounded subharmonic function in \mathbb{D} satisfying

$$
\Delta \varphi(z) \geq\|\partial \Pi(z)\|^{2}, \quad \forall z \in \mathbb{D}
$$

and let $K=\|\varphi\|_{\infty}$. Then for all ξ_{1} of the form $\xi_{1}=(I-\Pi) h, h \in H_{E}^{2}(\mathbb{D})$ we have

$$
\int_{\mathbb{D}} \Delta \varphi\left\|\xi_{1}\right\|^{2} d \mu \leq e K e^{K}\left\|\xi_{1}\right\|_{2}^{2}
$$

and

$$
\int_{\mathbb{D}}\left\|\partial \xi_{1}\right\|^{2} d \mu \leq\left(1+e K e^{K}\right)\left\|\xi_{1}\right\|_{2}^{2}
$$

We have a similar estimate for ξ_{2}. Only replace ∂ by $\bar{\partial}$.

Estimating the Second Integral

$$
\begin{aligned}
|\mathrm{II}| & =\left|\int_{\mathbb{D}}\left\langle\bar{\partial} \Pi \partial \xi_{1}, \xi_{2}\right\rangle d \mu\right| \\
& \leq \int_{\mathbb{D}}\left|\left\langle\bar{\partial} \Pi \xi_{1}, \xi_{2}\right\rangle\right| d \mu \\
& \leq\left(\int_{\mathbb{D}}\|\bar{\partial} \Pi\|^{2}\left\|\xi_{2}\right\|^{2} d \mu\right)^{1 / 2}\left(\int_{\mathbb{D}}\left\|\partial \xi_{1}\right\|^{2} d \mu\right)^{1 / 2}
\end{aligned}
$$

Here we used Cauchy-Schwarz applied to vectors and integrals. Using that $\|\bar{\partial} \Pi\|^{2} \leq \Delta \varphi$ and the Embedding Lemma gives

$$
|I I|=\left(e K e^{K}\left\|\xi_{2}\right\|_{2}^{2}\right)^{1 / 2}\left(\left(1+e K e^{K}\right)\left\|\xi_{1}\right\|_{2}^{2}\right)^{1 / 2}
$$

This proves $\left|L\left(\xi_{1}, \xi_{2}\right)\right| \leq C\left\|\xi_{1}\right\|_{2}\left\|\xi_{2}\right\|_{2}$.

Existence of φ

- The Main Theorem and the Embedding Lemma were dependent upon the existence of a function φ that satisfied:

$$
\Delta \varphi(z) \geq\|\partial \Pi(z)\|^{2} \quad \forall z \in \mathbb{D}
$$

- The condition on φ simply means the Green potential

$$
\mathcal{G}(\lambda):=\frac{2}{\pi} \iint_{\mathbb{D}} \ln \left|\frac{z-\lambda}{1-\bar{\lambda} z}\right|\|\partial \Pi(z)\|^{2} d x d y
$$

is uniformly bounded in the disk \mathbb{D}.

- The are several possible candidates for such a function:
- Direct computation shows that $\varphi(z)=C \operatorname{Tr}\left(F^{*}(z) F(z)\right)$ works. Doesn't give good estimates in terms of the constants.
- The function $\varphi(z)=\ln \operatorname{det}\left(F^{*}(z) F(z)\right)$ also works and gives better estimates.

