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The Operator Corona Problem

Formulation of the Problem

Let E and E∗ be separable complex Hilbert spaces.
Let Ω be a domain in Cn.
H2

E (Ω) is the analytic Hardy space with values in the Hilbert space E .
H∞E∗→E (Ω) is the collection of all bounded operator-valued functions.

F (z) : E∗ → E and ‖F‖H∞E∗→E (Ω) := sup
z∈Ω

‖F (z)‖E∗→E

Question (Operator Corona Problem)

Let F ∈ H∞E∗→E (Ω). Can we find, preferably local, necessary and sufficient
conditions on F so that it has an analytic left inverse? Namely, what
conditions imply the existence of a function G ∈ H∞E→E∗

(Ω) such that

G (z)F (z) ≡ I ∀z ∈ Ω.

A simple necessary condition is:

F ∗(z)F (z) ≥ δ2I ∀z ∈ Ω.
B. D. Wick (Vanderbilt University) Projections and the Corona Problem SEAM XXIII 2 / 18



The Operator Corona Problem

Connection to the Usual Corona Problem

Let Ω = D, the unit disc in the complex plane. The Operator Corona
Problem is a more general question based on the following:

Question (Corona Problem)

Suppose that f1, . . . , fn ∈ H∞(D) with ‖fj‖∞ ≤ 1 and

n∑
j=1

|fj(z)|2 ≥ δ2 ∀z ∈ D.

Do there exist gj ∈ H∞(D) such that

n∑
j=1

fj(z)gj(z) ≡ 1 ∀z ∈ D?

Take F (z) = (f1(z), . . . , fn(z))T in the Operator Corona Problem to
recover this question.
B. D. Wick (Vanderbilt University) Projections and the Corona Problem SEAM XXIII 3 / 18



The Operator Corona Problem

Known Results

Let Ω = D, the unit disc in the complex plane.

When E∗ = C and dim E < ∞.

In 1962 Carleson demonstrated that the simple necessary condition is
sufficient.
In 1979 Wolff gave a simpler compact proof of Carleson’s result.

When E∗ = C, dim E = ∞.

Rosenblum, Tolokonnikov, and Uchiyama independently gave proofs.

When dim E∗ < ∞ and dim E = ∞. (Matrix Corona Problem)

Fuhrmann and Vasyunin independently demonstrated this.

When dim E = dim E∗ = ∞. (Operator Corona Problem)

In 1988 Treil constructed a counter example which indicates that the
necessary condition is no longer sufficient.
In 2004 he gave another construction which demonstrated the same
phenomenon.

When n ≥ 2 and Ω ⊂ Cn (e.g. B or Dn) the H∞ Corona Problem is open.
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Connection to Analytic Projections

Nikolski’s Lemma

Lemma (Nikolski’s Lemma)

Let F ∈ H∞E∗→E (Ω) satisfy

F ∗(z)F (z) ≥ δ2I , ∀z ∈ Ω.

Then F is left invertible in H∞E∗→E (Ω) (i.e., there exists G ∈ H∞E→E∗
(Ω)

such that GF ≡ I ) if and only if there exists a function P ∈ H∞E→E (Ω)
whose values are projections (not necessarily orthogonal) onto F (z)E for
all z ∈ Ω.

Key Point: Finding a left inverse is replaced with constructing a bounded
analytic projection-valued function that takes a prescribed range.
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Connection to Analytic Projections

Proof of Nikolski’s Lemma

“⇒”

Let F be left invertible in H∞E∗→E (Ω), and let G any left inverse.

Define P ∈ H∞E→E (Ω) by

P(z) = F (z)G (z).

Note that

P2(z) = F (z)G (z)F (z)G (z) = F (z)IG (z) = F (z)G (z) = P(z).

The values of P are projections.

Since GF ≡ I
G (z)E = E∗ ∀z ∈ Ω.

Therefore

P(z)E = F (z)G (z)E = F (z)E∗ ∀z ∈ Ω

P(z) is a bounded analytic projection onto F (z)E∗.
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Connection to Analytic Projections

Proof of Nikolski’s Lemma

“⇐”

Suppose there exists a projection-valued function P ∈ H∞E→E , whose
values are projections onto F (z)E∗ for all z ∈ Ω.

In a neighborhood of each point z0 ∈ Ω the function F (z) has an
analytic left inverse.

Let G0 : E → E∗ be a constant left inverse to the operator F (z0), i.e.,
G0F (z0) = I .
Then

G0F (z) = I − G0(F (z0)− F (z)).

The inverse of G0F (z) is given by the analytic function

A(z) :=
∞∑

k=0

[G0 · (F (z0)− F (z))]k

defined in a neighborhood of z0.

A(z)G0 is a local analytic left inverse of F (z).
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Connection to Analytic Projections

Proof of Nikolski’s Lemma

For a fixed z ∈ Ω the operator F (z) is left invertible.
It is invertible if we treat it as an operator from E∗ to F (z)E∗.
Let F †(z) : F (z)E∗ → E∗ be the inverse of the “restricted” F (z).
For any (not necessarily analytic) left inverse G̃ (z) of F (z)

G̃ (z)
∣∣
F (z)E∗

= F †(z)
∣∣
F (z)E∗

.

Since P(z) is a projection onto F (z)E∗, the function G ,

G (z) := F †(z)P(z)

is well defined and bounded since both F † and P are bounded.
We have G (z)F (z) ≡ I . It only remains to show that G is analytic.

Fix z0 ∈ Ω and let Gz0(z) be a local analytic left inverse of F (z)
defined in a neighborhood of z0.
Then

G (z) = F †(z)P(z) = Gz0(z)

in a neighborhood of z0. So G (z) is analytic there.

Since z0 is arbitrary, G is analytic in Ω.
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Main Result

The Corona Condition and Projections in D
Let F ∈ H∞E∗→E (D) be such that

F ∗(z)F (z) ≥ δ2I ∀z ∈ D.

Set
Π(z) := F (z)(F ∗(z)F (z))−1F ∗(z) ∀z ∈ D.

Note that

Π(z) = Π(z)∗

Π2(z) = F (z)(F ∗(z)F (z))−1F ∗(z)F (z)(F ∗(z)F (z))−1F ∗(z)

= F (z)(F ∗(z)F (z))−1F ∗(z) = Π(z).

The values of Π are orthogonal projections with RanΠ(z) = RanF (z).
They are not analytic. Direct computation demonstrates that

Π(z)∂Π(z) = 0 ∀z ∈ D.
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Main Result

Main Theorem

Theorem (S. Treil, BW)

Let F ∈ H∞E∗→E (D) satisfy the Corona Condition F ∗F ≥ δ2I . Assume that
there exists a bounded non-negative subharmonic function ϕ such that

∆ϕ(z) ≥ ‖∂Π(z)‖2 z ∈ D.

Then F has a holomorphic left inverse G ∈ H∞E→E∗
(D).

Moreover, if the function ϕ satisfies

0 ≤ ϕ(z) ≤ K ∀z ∈ D,

then one can find the left inverse G satisfying

‖G‖∞ ≤ δ−1

(
1 + 2

√
(KeK+1 + 1)KeK+1

)
.
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Main Result

The Corona Condition and Projections

Method of Proof:

Construct a bounded analytic projection P(z) with

RanP(z) = RanF (z) ∀z ∈ D.

Apply Nikolski’s Lemma to see that F is left invertible.
Use the projection Π(z) as an initial guess for P(z).
Key Idea: Find some bounded operator-valued function
V (z) : E → E that we can use to “correct” the initial guess of Π(z)
to be holomorphic. Set P(z) = Π(z)− Π(z)V (z)(I − Π(z)).

Lemma

Let Π be an orthogonal projection in a Hilbert space H. Then any
projection P onto Ran Π can be represented as

P = Π + ΠV (I − Π),

where V ∈ B(H).
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Main Result

Finding V : Reduction to a Bilinear Form

We want Π− ΠV (I − Π) ∈ H∞E→E (D).

Follows from the equality:∫
T
〈Πh1, h2〉dm =

∫
T
〈ΠV (I − Π)h1, h2〉dm

to hold for all h1 ∈ H2
E (D) and h2 ∈ H2

E (D)⊥.

Apply Green’s formula to the left hand side:∫
T
〈Πh1, h2〉dm =

4

2π

∫
D

∂∂〈Πh1, h2〉 log

(
1

|z |

)
dxdy

=

∫
D

∂〈∂Πh1, h2〉dµ(z).

Here we used the harmonic extensions of h1 and h2 with h2 being
anti-analytic and h2(0) = 0.
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Main Result

Finding V : Reduction to a Bilinear Form

Π∂Π = 0 implies Π(∂Π)(I − Π) = ∂Π.

Define ξ1 := (I − Π)h1 and ξ2 := Πh2. Then∫
D

∂〈∂Πh1, h2〉dµ(z) =

∫
D

∂〈∂Πξ1, ξ2〉dµ(z) := L(ξ1, ξ2).

The bilinear form L is a Hankel form, i.e., L(zξ1, ξ2) = L(ξ1, z̄ξ2).

Suppose that we are able to prove the estimate

|L(ξ1, ξ2)| ≤ C‖ξ1‖2‖ξ2‖2.

We then can find V by applying an appropriate version of Nehari’s
Theorem to the Hankel form L.
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Main Result

Finding V : Reduction to a Bilinear Form

There exists an operator-valued function V ∈ L∞E→E (T) such that

L(ξ1, ξ2) =

∫
T
〈V ξ1, ξ2〉dm.

Recalling the definition of L and ξ1, ξ2 we get∫
T
〈ΠV (I − Π)h1, h2〉dm = L(ξ1, ξ2) =

∫
T
〈Πh1, h2〉dm

for all h1 ∈ H2
E (D) and all h2 ∈ H2

E (D)⊥.

Gives P(z) := Π(z)− Π(z)V (z)(I − Π(z)) ∈ H∞E→E (D).

Main Point: We only need to prove the estimate

|L(ξ1, ξ2)| ≤ C‖ξ1‖2‖ξ2‖2.
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Main Result

Estimating the Bilinear Form

The Wolff approach to the Corona Problem depends upon
demonstrating certain Embedding theorems. We will use a similar
idea to show |L(ξ1, ξ2)| ≤ C‖ξ1‖2‖ξ2‖2.

First observe that

L(ξ1, ξ2) =

∫
D

∂〈∂Πξ1, ξ2〉dµ(z) =

∫
D
〈∂∂Πξ1, ξ2〉dµ

+

∫
D
〈∂Π∂ξ1, ξ2〉dµ +

∫
D
〈∂Πξ1, ∂ξ2〉dµ

:= I + II + III.

Π∂Π = 0 implies that I ≡ 0.

II and III are symmetric. Only need to estimate one of them.
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Main Result

The Embedding Theorem

Lemma (Embedding Theorem for Holomorphic Vector Bundles)

Let ϕ be a non-negative bounded subharmonic function in D satisfying

∆ϕ(z) ≥ ‖∂Π(z)‖2, ∀z ∈ D,

and let K = ‖ϕ‖∞. Then for all ξ1 of the form ξ1 = (I − Π)h, h ∈ H2
E (D)

we have ∫
D

∆ϕ ‖ξ1‖2 dµ ≤ eKeK‖ξ1‖2
2

and ∫
D
‖∂ξ1‖2 dµ ≤ (1 + eKeK )‖ξ1‖2

2.

We have a similar estimate for ξ2. Only replace ∂ by ∂.
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Main Result

Estimating the Second Integral

|II| =

∣∣∣∣∫
D
〈∂Π∂ξ1, ξ2〉dµ

∣∣∣∣
≤

∫
D

∣∣〈∂Πξ1, ξ2〉
∣∣ dµ

≤
(∫

D
‖∂Π‖2‖ξ2‖2dµ

)1/2 (∫
D
‖∂ξ1‖2dµ

)1/2

Here we used Cauchy-Schwarz applied to vectors and integrals. Using that
‖∂Π‖2 ≤ ∆ϕ and the Embedding Lemma gives

|II| =
(
eKeK‖ξ2‖2

2

)1/2 (
(1 + eKeK )‖ξ1‖2

2

)1/2
.

This proves |L(ξ1, ξ2)| ≤ C‖ξ1‖2‖ξ2‖2.
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Main Result

Existence of ϕ

The Main Theorem and the Embedding Lemma were dependent upon
the existence of a function ϕ that satisfied:

∆ϕ(z) ≥ ‖∂Π(z)‖2 ∀z ∈ D.

The condition on ϕ simply means the Green potential

G(λ) :=
2

π

∫∫
D

ln

∣∣∣∣ z − λ

1− λz

∣∣∣∣ ‖∂Π(z)‖2dxdy

is uniformly bounded in the disk D.

The are several possible candidates for such a function:

Direct computation shows that ϕ(z) = C Tr(F ∗(z)F (z)) works.
Doesn’t give good estimates in terms of the constants.
The function ϕ(z) = ln det(F ∗(z)F (z)) also works and gives better
estimates.
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