Bounded Analytic Projections and the Corona Problem

Brett D. Wick

Vanderbilt University Department of Mathematics

SEAM XXIII University of Richmond March 11th, 2007

SEAM XXIII 1 / 18

Formulation of the Problem

- Let E and E_* be separable complex Hilbert spaces.
- Let Ω be a domain in \mathbb{C}^n .
- $H_E^2(\Omega)$ is the analytic Hardy space with values in the Hilbert space E.
- $H^{\infty}_{E_* \to E}(\Omega)$ is the collection of all bounded operator-valued functions.

$$F(z): E_* o E$$
 and $\|F\|_{H^\infty_{E_* o E}(\Omega)} := \sup_{z \in \Omega} \|F(z)\|_{E_* o E}$

Question (Operator Corona Problem)

Let $F \in H^{\infty}_{E_* \to E}(\Omega)$. Can we find, preferably local, necessary and sufficient conditions on F so that it has an analytic left inverse? Namely, what conditions imply the existence of a function $G \in H^{\infty}_{E \to E_*}(\Omega)$ such that

$$G(z)F(z)\equiv I \quad \forall z\in \Omega.$$

A simple necessary condition is:

$$F^*(z)F(z) \geq \delta^2 I \quad \forall z \in \Omega.$$

Connection to the Usual Corona Problem

Let $\Omega=\mathbb{D},$ the unit disc in the complex plane. The Operator Corona Problem is a more general question based on the following:

Question (Corona Problem)

Suppose that $f_1, \ldots, f_n \in H^\infty(\mathbb{D})$ with $\|f_j\|_\infty \leq 1$ and

$$\sum_{j=1}^n |f_j(z)|^2 \geq \delta^2 \quad orall z \in \mathbb{D}.$$

Do there exist $g_j \in H^\infty(\mathbb{D})$ such that

$$\sum_{j=1}^n f_j(z)g_j(z)\equiv 1 \quad orall z\in \mathbb{D}?$$

Take $F(z) = (f_1(z), \ldots, f_n(z))^T$ in the Operator Corona Problem to recover this question.

B. D. Wick (Vanderbilt University)

SEAM XXIII 3 / 18

Known Results

Let $\Omega=\mathbb{D},$ the unit disc in the complex plane.

- When $E_* = \mathbb{C}$ and dim $E < \infty$.
 - In 1962 Carleson demonstrated that the simple necessary condition is sufficient.
 - In 1979 Wolff gave a simpler compact proof of Carleson's result.

• When
$$E_* = \mathbb{C}$$
, dim $E = \infty$.

- Rosenblum, Tolokonnikov, and Uchiyama independently gave proofs.
- When dim $E_* < \infty$ and dim $E = \infty$. (Matrix Corona Problem)
 - Fuhrmann and Vasyunin independently demonstrated this.
- When dim $E = \dim E_* = \infty$. (Operator Corona Problem)
 - In 1988 Treil constructed a counter example which indicates that the necessary condition is no longer sufficient.
 - In 2004 he gave another construction which demonstrated the same phenomenon.

When $n \geq 2$ and $\Omega \subset \mathbb{C}^n$ (e.g. \mathbb{B} or \mathbb{D}^n) the H^{∞} Corona Problem is open.

Nikolski's Lemma

Lemma (Nikolski's Lemma)

Let $F\in H^\infty_{E_*\to E}(\Omega)$ satisfy

$$F^*(z)F(z) \ge \delta^2 I, \quad \forall z \in \Omega.$$

Then F is left invertible in $H^{\infty}_{E_* \to E}(\Omega)$ (i.e., there exists $G \in H^{\infty}_{E \to E_*}(\Omega)$ such that $GF \equiv I$) if and only if there exists a function $\mathcal{P} \in H^{\infty}_{E \to E}(\Omega)$ whose values are projections (not necessarily orthogonal) onto F(z)E for all $z \in \Omega$.

Key Point: Finding a left inverse is replaced with constructing a bounded analytic projection-valued function that takes a prescribed range.

Proof of Nikolski's Lemma

"⇒"

- Let F be left invertible in $H^{\infty}_{E_* \to E}(\Omega)$, and let G any left inverse.
- Define $\mathcal{P} \in H^{\infty}_{E \to E}(\Omega)$ by

$$\mathcal{P}(z) = F(z)G(z).$$

Note that

$$\mathcal{P}^2(z) = F(z)G(z)F(z)G(z) = F(z)IG(z) = F(z)G(z) = \mathcal{P}(z).$$

- The values of ${\mathcal P}$ are projections.
- Since $GF \equiv I$

$$G(z)E = E_* \quad \forall z \in \Omega.$$

Therefore

$$\mathcal{P}(z)E = F(z)G(z)E = F(z)E_* \quad \forall z \in \Omega$$

• $\mathcal{P}(z)$ is a bounded analytic projection onto $F(z)E_*$.

Proof of Nikolski's Lemma

- Suppose there exists a projection-valued function *P* ∈ H[∞]_{E→E}, whose values are projections onto *F*(*z*)*E*_{*} for all *z* ∈ Ω.
- In a neighborhood of each point $z_0 \in \Omega$ the function F(z) has an analytic left inverse.
 - Let $G_0: E \to E_*$ be a constant left inverse to the operator $F(z_0)$, i.e., $G_0F(z_0) = I$.
 - Then

"⇐"

$$G_0F(z) = I - G_0(F(z_0) - F(z)).$$

• The inverse of $G_0F(z)$ is given by the analytic function

$$A(z) := \sum_{k=0}^{\infty} \left[G_0 \cdot \left(F(z_0) - F(z)\right)\right]^k$$

defined in a neighborhood of z_0 .

• $A(z)G_0$ is a local analytic left inverse of F(z).

Proof of Nikolski's Lemma

- For a fixed $z \in \Omega$ the operator F(z) is left invertible.
- It is invertible if we treat it as an operator from E_* to $F(z)E_*$.
- Let $F^{\dagger}(z): F(z)E_* \to E_*$ be the inverse of the "restricted" F(z).
- For any (not necessarily analytic) left inverse G(z) of F(z)

$$\widetilde{G}(z) \mid_{F(z)E_*} = F^{\dagger}(z) \mid_{F(z)E_*}$$

• Since $\mathcal{P}(z)$ is a projection onto $F(z)E_*$, the function G,

$$G(z) := F^{\dagger}(z)\mathcal{P}(z)$$

is well defined and bounded since both ${\it F}^{\dagger}$ and ${\cal P}$ are bounded.

• We have $G(z)F(z) \equiv I$. It only remains to show that G is analytic.

Fix z₀ ∈ Ω and let G_{z0}(z) be a *local* analytic left inverse of F(z) defined in a neighborhood of z₀.

• Then

$$G(z) = F^{\dagger}(z)\mathcal{P}(z) = G_{z_0}(z)$$

in a neighborhood of z_0 . So G(z) is analytic there.

• Since z_0 is arbitrary, G is analytic in Ω .

B. D. Wick (Vanderbilt University)

The Corona Condition and Projections in ${\mathbb D}$

Let $F \in H^\infty_{E_* o E}(\mathbb{D})$ be such that

$$F^*(z)F(z) \geq \delta^2 I \quad \forall z \in \mathbb{D}.$$

Set

$$\Pi(z):=F(z)(F^*(z)F(z))^{-1}F^*(z)\quad \forall z\in\mathbb{D}.$$

Note that

$$\begin{aligned} \Pi(z) &= \Pi(z)^* \\ \Pi^2(z) &= F(z)(F^*(z)F(z))^{-1}F^*(z)F(z)(F^*(z)F(z))^{-1}F^*(z) \\ &= F(z)(F^*(z)F(z))^{-1}F^*(z) = \Pi(z). \end{aligned}$$

The values of Π are orthogonal projections with Ran $\Pi(z) = \text{Ran } F(z)$. They are **not analytic**. Direct computation demonstrates that

$$\Pi(z)\partial\Pi(z)=0\quad \forall z\in\mathbb{D}.$$

Main Theorem

Theorem (S. Treil, BW)

Let $F \in H^{\infty}_{E_* \to E}(\mathbb{D})$ satisfy the Corona Condition $F^*F \ge \delta^2 I$. Assume that there exists a bounded non-negative subharmonic function φ such that

 $\Delta \varphi(z) \geq \|\partial \Pi(z)\|^2 \quad z \in \mathbb{D}.$

Then F has a holomorphic left inverse $G \in H^{\infty}_{E \to E_*}(\mathbb{D})$. Moreover, if the function φ satisfies

$$0 \leq \varphi(z) \leq K \quad \forall z \in \mathbb{D},$$

then one can find the left inverse G satisfying

$$\|G\|_{\infty} \leq \delta^{-1} \left(1 + 2\sqrt{(\mathcal{K}e^{\mathcal{K}+1}+1)\mathcal{K}e^{\mathcal{K}+1}}
ight)$$

.

The Corona Condition and Projections

Method of Proof:

• Construct a bounded analytic projection $\mathcal{P}(z)$ with

$$\operatorname{\mathsf{Ran}} \mathcal{P}(z) = \operatorname{\mathsf{Ran}} F(z) \quad orall z \in \mathbb{D}.$$

- Apply Nikolski's Lemma to see that F is left invertible.
- Use the projection $\Pi(z)$ as an initial guess for $\mathcal{P}(z)$.
- Key Idea: Find some bounded operator-valued function
 - $V(z): E \to E$ that we can use to "correct" the initial guess of $\Pi(z)$ to be holomorphic. Set $\mathcal{P}(z) = \Pi(z) \Pi(z)V(z)(I \Pi(z))$.

Lemma

Let Π be an orthogonal projection in a Hilbert space H. Then any projection \mathcal{P} onto Ran Π can be represented as

$$\mathcal{P}=\Pi+\Pi V(I-\Pi),$$

where $V \in B(H)$.

Finding V: Reduction to a Bilinear Form

- We want $\Pi \Pi V(I \Pi) \in H^{\infty}_{E \to E}(\mathbb{D}).$
- Follows from the equality:

$$\int_{\mathbb{T}} \langle \Pi h_1, h_2 \rangle dm = \int_{\mathbb{T}} \langle \Pi V (I - \Pi) h_1, h_2 \rangle dm$$

to hold for all $h_1 \in H^2_E(\mathbb{D})$ and $h_2 \in H^2_E(\mathbb{D})^{\perp}$.

• Apply Green's formula to the left hand side:

$$\begin{split} \int_{\mathbb{T}} \langle \Pi h_1, h_2 \rangle dm &= \frac{4}{2\pi} \int_{\mathbb{D}} \partial \overline{\partial} \langle \Pi h_1, h_2 \rangle \log \left(\frac{1}{|z|} \right) dx dy \\ &= \int_{\mathbb{D}} \partial \langle \overline{\partial} \Pi h_1, h_2 \rangle d\mu(z). \end{split}$$

Here we used the harmonic extensions of h_1 and h_2 with h_2 being anti-analytic and $h_2(0) = 0$.

Finding V: Reduction to a Bilinear Form

- $\Pi \partial \Pi = 0$ implies $\Pi(\overline{\partial}\Pi)(I \Pi) = \overline{\partial}\Pi$.
- Define $\xi_1 := (I \Pi)h_1$ and $\xi_2 := \Pi h_2$. Then

$$\int_{\mathbb{D}} \partial \langle \overline{\partial} \Pi h_1, h_2 \rangle d\mu(z) = \int_{\mathbb{D}} \partial \langle \overline{\partial} \Pi \xi_1, \xi_2 \rangle d\mu(z) := L(\xi_1, \xi_2).$$

- The bilinear form L is a Hankel form, i.e., $L(z\xi_1,\xi_2) = L(\xi_1,\overline{z}\xi_2)$.
- Suppose that we are able to prove the estimate

$$|L(\xi_1,\xi_2)| \leq C \|\xi_1\|_2 \|\xi_2\|_2.$$

We then can find V by applying an appropriate version of Nehari's Theorem to the Hankel form L.

Finding V: Reduction to a Bilinear Form

• There exists an operator-valued function $V \in L^\infty_{E o E}(\mathbb{T})$ such that

$$L(\xi_1,\xi_2)=\int_{\mathbb{T}}\langle V\xi_1,\xi_2
angle dm.$$

• Recalling the definition of L and ξ_1 , ξ_2 we get

$$\int_{\mathbb{T}} \langle \Pi V(I - \Pi) h_1, h_2 \rangle dm = L(\xi_1, \xi_2) = \int_{\mathbb{T}} \langle \Pi h_1, h_2 \rangle dm$$

for all $h_1 \in H^2_E(\mathbb{D})$ and all $h_2 \in H^2_E(\mathbb{D})^{\perp}$. • Gives $\mathcal{P}(z) := \Pi(z) - \Pi(z)V(z)(I - \Pi(z)) \in H^{\infty}_{E \to E}(\mathbb{D})$.

Main Point: We only need to prove the estimate

 $|L(\xi_1,\xi_2)| \leq C \|\xi_1\|_2 \|\xi_2\|_2.$

Estimating the Bilinear Form

- The Wolff approach to the Corona Problem depends upon demonstrating certain Embedding theorems. We will use a similar idea to show $|L(\xi_1, \xi_2)| \leq C \|\xi_1\|_2 \|\xi_2\|_2$.
- First observe that

$$\begin{split} L(\xi_1,\xi_2) &= \int_{\mathbb{D}} \partial \langle \overline{\partial} \Pi \xi_1,\xi_2 \rangle d\mu(z) = \int_{\mathbb{D}} \langle \partial \overline{\partial} \Pi \xi_1,\xi_2 \rangle d\mu \\ &+ \int_{\mathbb{D}} \langle \overline{\partial} \Pi \partial \xi_1,\xi_2 \rangle d\mu + \int_{\mathbb{D}} \langle \overline{\partial} \Pi \xi_1,\overline{\partial} \xi_2 \rangle d\mu \\ &:= 1 + || + |||. \end{split}$$

• $\Pi \partial \Pi = 0$ implies that $I \equiv 0$.

• II and III are symmetric. Only need to estimate one of them.

The Embedding Theorem

Lemma (Embedding Theorem for Holomorphic Vector Bundles)

Let φ be a non-negative bounded subharmonic function in $\mathbb D$ satisfying

$$\Delta arphi(z) \geq \| \partial \Pi(z) \|^2, \qquad orall z \in \mathbb{D},$$

and let $K = \|\varphi\|_{\infty}$. Then for all ξ_1 of the form $\xi_1 = (I - \Pi)h$, $h \in H^2_E(\mathbb{D})$ we have

$$\int_{\mathbb{D}}\Deltaarphi \|\xi_1\|^2 \, d\mu \leq e \mathsf{K} e^{\mathsf{K}} \|\xi_1\|_2^2$$

and

$$\int_{\mathbb{D}} \|\partial \xi_1\|^2 \, d\mu \leq (1+ e \mathcal{K} e^{\mathcal{K}}) \|\xi_1\|_2^2.$$

We have a similar estimate for ξ_2 . Only replace ∂ by $\overline{\partial}$.

Estimating the Second Integral

$$\begin{aligned} |\mathbf{I}| &= \left| \int_{\mathbb{D}} \langle \overline{\partial} \Pi \partial \xi_{1}, \xi_{2} \rangle d\mu \right| \\ &\leq \int_{\mathbb{D}} \left| \langle \overline{\partial} \Pi \xi_{1}, \xi_{2} \rangle \right| d\mu \\ &\leq \left(\int_{\mathbb{D}} \| \overline{\partial} \Pi \|^{2} \| \xi_{2} \|^{2} d\mu \right)^{1/2} \left(\int_{\mathbb{D}} \| \partial \xi_{1} \|^{2} d\mu \right)^{1/2} \end{aligned}$$

Here we used Cauchy-Schwarz applied to vectors and integrals. Using that $\|\overline{\partial}\Pi\|^2 \leq \Delta \varphi$ and the Embedding Lemma gives

$$|\mathsf{II}| = \left(e\mathcal{K}e^{\mathcal{K}}\|\xi_2\|_2^2\right)^{1/2} \left((1 + e\mathcal{K}e^{\mathcal{K}})\|\xi_1\|_2^2\right)^{1/2}$$

This proves $|L(\xi_1, \xi_2)| \leq C \|\xi_1\|_2 \|\xi_2\|_2$.

Existence of φ

• The Main Theorem and the Embedding Lemma were dependent upon the existence of a function φ that satisfied:

$$\Delta arphi(z) \geq \| \partial \mathsf{\Pi}(z) \|^2 \quad orall z \in \mathbb{D}.$$

 \bullet The condition on φ simply means the Green potential

$$\mathcal{G}(\lambda) := rac{2}{\pi} \iint_{\mathbb{D}} \ln \left| rac{z - \lambda}{1 - \overline{\lambda} z} \right| \| \partial \Pi(z) \|^2 dx dy$$

is uniformly bounded in the disk \mathbb{D} .

- The are several possible candidates for such a function:
 - Direct computation shows that $\varphi(z) = C \operatorname{Tr}(F^*(z)F(z))$ works. Doesn't give good estimates in terms of the constants.
 - The function φ(z) = ln det(F*(z)F(z)) also works and gives better estimates.