THE GROWTH OF UNIVALENT FUNCTIONS WITH AN INITIAL GAP

Walter K. Hayman

Department of Mathematics, Imperial College London

(Joint work with D. Aharonov and Ch. Pommerenke)

Abstract

We consider the class S_p of those functions

$$f(z) = z + a_{p+1}z^{p+1} + \dots$$

univalent in the unit disk Δ . We show that if $f \in S_p$, where p is large, then

$$\alpha(f) = \lim_{n \to \infty} \frac{|a_n|}{n} \le \alpha(p) = \frac{2(\log p \, \log \log p)^2}{p^4}.$$

We also obtain upper bounds for $|a_n|$ when $f \in S_p$.

In the opposite direction, examples are constructed of functions $f \in S_p$ for which $\alpha(f) \geq C_0 p^{-4}$, where C_0 is a positive absolute constant.