On the Product of Functions in $\boldsymbol{B M O}$ and \boldsymbol{H}^{1}

Aline Bonami Tadeusz Iwaniec
Peter Jones
Michel Zinsmeister

Abstract

The point-wise product $\mathfrak{b} \cdot \mathfrak{h}$ of functions $\mathfrak{b} \in \boldsymbol{B M O}\left(\mathbb{R}^{n}\right)$ and $\mathfrak{h} \in \boldsymbol{H}^{1}\left(\mathbb{R}^{n}\right)$ need not be locally integrable. However, in view of the duality between $\boldsymbol{B M O}$ and \boldsymbol{H}^{1}, we are able to give a meaning to $\mathfrak{b} \cdot \mathfrak{h}$ as a Schwartz distribution, denoted by $\mathfrak{b} \times \mathfrak{h} \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$. The central question is concerned with the regularity of $\mathfrak{b} \times \mathfrak{h} \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$. We prove a decomposition: $$
\mathfrak{b} \times \mathfrak{h}=\alpha+\beta,
$$ where α is a function in $\boldsymbol{L}^{1}\left(\mathbb{R}^{n}\right)$ while β is a distribution in a HardyOrlicz space. Precisely this means that its maximal function $\mathscr{M} \beta$ satisfies $$
\int_{\mathbb{R}^{n}} \frac{\mathscr{M} \beta}{\log (e+\mathscr{M} \beta)} d \mu<\infty, \quad \text { where } \quad d \mu=\frac{d x}{\log (e+|x|)}
$$

The Jacobian determinants and more general div-curl products come to a play as atoms.

