
Hierarchical Bayesian Markov Switching Models
with Application to Predicting Spawning Success

of Shovelnose Sturgeon

Scott Holan
University of Missouri - Columbia

Joint work with
Ginger Davis - University of Virginia

and

M. Wildhaber, A. DeLonay, D. Papoulias, J. Bryan - USGS

Washington University - December 4, 2008



Outline

I Background and Motivation

I Data

I Model and Methods

I Results

I Summary and Future Directions



USGS - Columbia Environmental Research Center Study

I Recruitment of pallid sturgeon to the adult population is
limited in the Missouri River

I Species is rare in the Missouri River and was listed as an
endangered species in 1990

I Possible reasons for decline in pallid sturgeon population

1. Commercial Harvest

2. Habitat Alteration

3. Pollution

4. Impoundment (Dam Construction)

I Similar to the pallid sturgeon, the shovelnose sturgeon is
declining and is at risk of extirpation



USGS - Columbia Environmental Research Center

I Determine the ecological requirements for reproduction and
survival of pallid and shovelnose sturgeon in the Missouri River

I Shovelnose sturgeon closely related to the pallid sturgeon, and
spawning requirements and behavior are similar in many
respects

I Use shovelnose as a surrogate species to develop new research
tools, or to examine the impacts of management actions, or
environmental variables on sturgeon biology and habitat use

I Understanding the difference in successful and unsuccessful
spawners within the shovelnose sturgeon should provide us
with some knowledge concerning the spawning success of the
closely related pallid sturgeon



Shovelnose and Pallid Sturgeon - Lower Missouri River



USGS Columbia Environmental Research Center - Study
Objectives

1. Determine the direction, magnitude, and habitat used during
spawning migrations for shovelnose sturgeon at two
geologically and hydrologically distinct reaches of the lower
Missouri River

2. Describe the reproductive physiology of shovelnose sturgeon
prior to and after successful and unsuccessful spawning

3. Identify and rank proximate cues necessary for successful
spawning by Missouri River sturgeon



Study Area - Missouri River Basin



Study Area - Two geologically and hydrologically distinct
segments of the Lower Missouri River

Upper 
Segment

Lower 
Segment



Data Collection Process

I Study Subjects

I 2004: 9 female shovelnose sturgeon

I 2005: 15 female shovelnose sturgeon

I 2006: 20 female shovelnose sturgeon

I Biologists track sturgeon using two types of implanted
telemetry devices

I Ultrasonic transmitters provide the location of fish, which are
tracked through the suspected spawning period

I Archival data storage tags (DST’s) record the temperature
and depths of the fish every 15 minutes

I Goal: Use collected data to compare behavioral and
environmental factors for spawning and non-spawning
sturgeon



Ultrasound

USGS Fisheries Biologist is checking for female and readiness to spawn (note spawning only occurs every 2-3 years).



Reproductive Stage V



Telemetry and DST Devices



Telemetry Device Implantation



Fish Recapture



Biological Variables of Interest

I Sl = standard length of fish in mm

I Fl = fork length of fish in mm

I Wt = weight of fish in kg

I PI = polarization index

I percent distance the germinal vesicle is to the edge of the egg

I The lower the number the farther the nucleus has migrated
and the closer the fish is to spawning.

I Cape2 = capture estradiol level in pg/mL

I Cap11kt = capture 11-ketotestosterone level in pg/mL

I Capc = capture cortisol level in ng/mL



Blood Sample

Removal of blood from a shovelnose sturgeon



Environmental and Behavioral Variables of Interest

I Transcode = unique fish number (transmitter code number)

I Capture segment = denotes whether the fish was caught in
the south or north section of the river

I Year = year fish was caught

I Depth = depth of fish

I Temperature = temperature of fish

I Location = river location



Example Time Series Plot of Depth, Temperature, and
Location



Response Variables

I Recapoocyteratio = ratio of mature oocytes (eggs) to early
stage oocytes

I Lower ratios are indicative of more complete the spawning.

I Also known as spawning index

I Logit transformation: logitratio = log recapoocyteratio
1−recapoocyteratio

I Recapspawn = Categorical variable of the continuous
recapoocyteratio variable

I 0− 35% = complete spawn

I 35− 75% = incomplete spawn

I > 75% = no spawn

I Note that this choice of threshold was determined through
extensive empirical investigation by expert fisheries biologists



Partial and Complete Spawn

Partial-Spawner

Complete-Spawner



Model Motivation
After examining depth profiles for successful and non-successful
spawners, it is hypothesized that the variability of their depth
profiles could be useful in predicting spawning success
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Model Motivation - Exploratory Analysis

I Fit Markov Switching Stochastic Volatility Models - Smith
2002

I 2-regime (high and low) model for volatility

I Switching between regimes is governed by probability
transition matrix (

1− ei1 ei1

ei2 1− ei2

)
I It was observed that the values ei1 and ei2 were higher for fish

who had no spawn or only a partial spawn

I univariate measurement = 2nd eigenvalue = 1− ei1 − ei2

I What does this mean?

I Fish who do not spawn or spawn only partially transition
between the high and low variability states more frequently
than the fish who spawn completely



Model Motivation - Frequentist Formulation

I Let λi an zi denote the eigenvalue and logit ratio for the i th

fish respectively

I Linear Regression Model

zi = γ0 + γ1wti + γ2sli + γ3PIi + γ4cape2i + γ5cap11kti

+ γ6capci + γ7λi + εi

I What is the problem here?

I λi is not given, but estimated

I differing levels of uncertainty / sample sizes (profile lengths)

I One solution: Take a Bayesian approach



Hierarchical Bayesian Model Definition

I Heuristically the model can be thought of as follows

1. Higher level of hierarchy

I Generate draws from distribution of the second eigenvalue of
the transition probability matrix in a Markov switching
volatility model

2. Lower level of hierarchy

I Given these eigenvalues, we estimate the regression
parameters of interest in a linear model



Two-state Markov Switching Volatility Model Definition

I dit = depth of fish i at time t and Di = collection of all depth
values for fish i

I Two-state Markov switching model with different GARCH -
dynamics:

dit =


βi1

√
hit +

√
hitεit , hit = αi10 + αi11hi,t−1 + αi12a

2
i,t−1, if sit = 1;

βi2

√
hit +

√
hitεit , hit = αi20 + αi21hi,t−1 + αi22a

2
i,t−1, if sit = 2,

where ait =
√

hitεit , {εit} is a sequence of standard normal
white noise random variables and the parameters αijk satisfy
some regularity conditions so that the unconditional variance
of ait exists



Two-state Markov Switching Volatility Model Definition

I The probability that a fish transitions from one state to
another, is governed by the following transition probabilities

P (sit = 2|si ,t−1 = 1) = ei1,

P (sit = 1|si ,t−1 = 2) = ei2

where 0 < eij < 1 for j = 1, 2

I Small values of eij indicate that fish i has a tendency to stay
in the j th state with expected duration 1

eij



Estimating the Model

I Bayesian method using Gibbs sampling approach

I Assume hi1 and equal to the sample variance of dit . The effect
of this assumption is negligible when the sample size is large

I Parameters to estimate:

I βi1, βi2

I αi10, αi11, αi12, αi20, αi21, αi22

I ei1, ei2

I state vector Si = (si1, si2, . . . , sini )

I volatility vector Hi = (hi2, . . . , hini )



Estimating the Model - Prior Distributions

I Gibbs sampling approach - only the following conditional
posterior distributions are needed:

I f (βi |Di ,Si ,Hi ,αi1,αi2)

I f (αi1|Di ,Si ,Hi ,αi2)

I f (αi2|Di ,Si ,Hi ,αi1)

I P (Si |Di , hi1,αi1,αi2)

I f (ei1, ei2|Si )

I For simplicity, we impose conjugate priors for βij and eij

(j = 1, 2)

I βij ∼ N
(
βj0, σ

2
j0

)
, for j = 1, 2

I eij ∼ Beta (δj1, δj2), for j = 1, 2

I The prior distribution of αijk is uniform over a properly
specified interval



Posterior Distribution of βi1, βi2

I The posterior distribution of βij (j = 1, 2) only depends on the
data in state j

I For (j = 1, 2), let

d
(j)
it =

dit√
hit

if sit = j and 0 otherwise,

d̄
(j)
it =

∑
sit=1 dit

(j)

nij

nij = number of data points in state j for fish i

I Then the conditional posterior distribution of βij is

βij ∼ N
(
σ2

ij∗

(
nij d̄

(j)
it + βj0/σ

2
j0

)
, σ2

ij∗

)
,

where 1
σ2

ij∗
= nij + 1

σ2
j0



Posterior Distribution of αijk

I In order to draw realizations of αijk we use the Griddy Gibbs
Method - Ritter and Tanner (1992)

I Given hi1,Si , all other elements in α, we have that

f (αijk |·) ∝ −
1

2

(
log hit +

(
dit − βij

√
hit

)2
hit

)
, if sit = j

I Evaluate this function at a grid of points for αijk over a
properly specified interval.

I Define the following

I mi1 = the number of switches from state 1 to state 2

I mi2 = the number of switches from state 2 to state 1

I posterior distribution of eij∼ Beta (δj1 + mij , δj2 + nij −mi1)



Posterior Distribution of Si

I Elements of Si drawn one by one

I Let S
(−l)
i be the vector obtained by removing sil from Si

I Given S
(−l)
i and other information, the conditional posterior

distribution of sil is

P (sil |·) ∝
ni∏

t=l

(ait |Hi ) P
(
sil |S(−l)

i

)
.

I L (sil = j) ≡
∏ni

t=l f (ait |Hi ) ∝ exp (filj) , where

filj =

ni∑
t=l

−1

2

(
ln hit +

a2
it

hit

)
.

and ait = dit − βij

√
hit if sit = j for j = 1, 2

I Finally, the conditional posterior probability of sil = j is

P (sil = j | ·) =
P

`
sil = j |si,l−1, si,l+1

´
L (sil = j)

P
`
sil = 1|si,l−1, si,l+1

´
L (sil = 1) + P

`
sil = 2|si,l−1, si,l+1

´
L (sil = 2)

I Therefore state sil can be drawn from a Uniform(0,1)
distribution



Estimating the Regression Model - Priors

I Let z = logitratio = Xγ + ε denote our regression in matrix
notation, with ε ∼ N(0, σ2

ε I )

I Additionally, let γ = µ + v with v ∼ N(0,Vγ)

I Following Rossi, Allenby, and McCulloch (2005) we impose
the following conjugate priors:

I σ2
ε ∼ νεs

2
0/χ

2
νε

I Vγ ∼ IW (ν,V )

I µ|Vγ ∼ N(µ,Vγ ⊗ A−1) where µ = 0 is a matrix of prior
means and A = .01I is a matrix for prior precision

I νε is a degree of freedom (df) parameter for σ2
ε defined equal

to 3

I ν is the df parameter for Vγ defined equal to the number of
variables plus 3



Estimating the Regression Model - Posterior Distribution

I We use a Gibbs sampling technique to first draw (γ, σ2
ε ) given

the parameters of the first stage prior, µ, Vγ , and then draw
the prior parameters conditional on (γ, σ2

ε )

I The posterior distribution for the regression parameters of
interest is

γ|z, X, µ, Vγ , σ
2
ε ∼ N

{
γ∗, (X∗

′
X∗ + V−1

γ )−1
}

where

γ∗ = (X∗
′
X∗ + V−1

γ )−1(X∗
′
z∗ + V−1

γ µ),

with z∗ = z/σε and X∗ = X/σε



Parallel Computing

I Large number of Markov switching stochastic volatility models
required in estimation (1 per fish)

I These models are computationally expensive due to the grid
estimation technique (high dimensional grid)

I Good news: Each model is independent!

I Parallel computation using Rmpi in R



Parallel Computation Algorithm

I Steps in algorithm

1. Master processor generates information for joint model (which
is conditional on the previous iteration).

2. Master processor reports this information to each slave.

3. Slaves perform estimation of fish-specific Markov switching
stochastic volatility models.

4. Master collect estimates of the fish specific eigenvalues and
uses them in estimation of lower level parameters.

I Computational cost benefit

I 1 iteration in serial: 57.7 minutes

I 1 iteration in parallel: 1.7 minutes

I 97% reduction in computing time!



Alternative models

I OLS Linear Regression Model without eigenvalue predictor

logitratioi = γ0 + γ1wti + γ2sli + γ3PIi + γ4cape2i

+γ5cap11kti + γ6capci + εi

I Hierarchical Bayesian Regression Model 1

logitratioi = γ0 + γ1wti + γ2sli + γ3PIi + γ4cape2i

+γ5cap11kti + γ6capci + γ7λi + εi

I Hierarchical Bayesian Regression Model 2

logitratioi = γ0 + γ1wti + γ2PIi + γ3cape2i

+γ4cap11kti + γ5capci + γ6λi + εi

I Hierarchical Bayesian Regression Model 3

logitratioi = γ0 + γ1wti + γ2λi + εi



OLS Linear Regression Model without eigenvalue
parameter estimates predictor

Parameter Estimate Std. Error Pr(> |t|)
Intercept -8.2099 21.4056 0.706
wt 0.0083 0.0062 0.198
sl -0.0081 0.0471 0.866
PI 8.1889 15.6906 0.608
cape2 -0.0004 0.0003 0.224
cap11kt 0.0003 0.0005 0.572
capc -0.0557 0.0498 0.278



Preferred Hierarchical Bayesian Regression Model
Model 3 was preferred based on:

1. exploratory analysis of 95% credible intervals of model
parameters in a fully saturated model,

2. underlying biological considerations supplied by expert
fisheries biologists,

3. DIC (Note: DIC(Model 1)=533.35, DIC(Model 2)=532.46),

4. Model 3 has lowest mean squared error as well as best
in-sample classification

Model M3 - DIC = 522.4657

Parameter Posterior Posterior 95% Credible Interval
Mean Std. Dev.

Intercept 0.180 0.989 (-1.44,1.80)
wt* 0.00268 0.00130 (0.000582,0.00485)
eigenvalue* -0.851 0.186 (-1.16,-0.546)

Note: In all Bayesian models eigenvalue was significant and in
Models 2 and 3 wt was significant as well



Comparison of Confusion Matrix for OLS regression model
and the hierarchical Bayesian Model 3

Actual (Model) Predict (Model) Predict (Model)
Successful Spawn Unsuccessful Spawn

Successful Spawner 37 0
(OLS)
Unsuccessful Spawner 4 3
(OLS)

Successful Spawner 37 0
(Bayesian M3)
Unsuccessful Spawner 1 6
(Bayesian M3)



Probability estimates of being in the low variability regime



Markov Switching GARCH Model Parameters

Parameter Non-spawner Posterior Mean Spawner Posterior Mean
(95% CI) (95% CI)

Low Variability Regime

α10 1.33 1.30
(0.714, 2.09) (0.0781, 1.69)

α11 0.292 0.485
(0.174, 0.396) (0.340, 0.631)

α12 0.432 0.140
(0.242, 0.644) (0.00795, 0.366)

High Variability Regime

α20 0.025 0.122
(0.0144, 0.0395) (0.0979, 0.157)

α21 0.569 0.857
(0.425, 0.722) (0.679, 0.998)

α22 0.431 0.105
(0.355, 0.521) (0.0343, 0.191)



Eigenvalue HPD Histograms for non-spawners vs. spawners
 

eigenvalues (non−spawners)
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eigenvalues (spawners)
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Note that these posterior densities are disjoint and have endpoints
as follows: (0.717, 0.884) for the non-spawners and (0.887, 0.998)
for the spawners



Histogram - Proportion of Time Each Fish Spent in the
High Variability Regime
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Note that we work with proportion of time rather than length of
time because of unequal observation lengths due to different
recapture times



Summary

I Developed a Bayesian hierarchical model for predicting
spawning success capable of utilizing Data Storage Tag data

I Model incorporates an eigenvalue predictor from the transition
probability matrix in a two-state Markov switching model with
GARCH dynamics as a generated regressor in a linear
regression model

I Outperforms model without DST information

I OLS model is insufficient: does not find relevance of weight to
spawning success

I Our results support the hypothesis that spawners exhibit lower
levels of depth variability in their swimming pattern during the
spawning season

I Clear distinction between depth variability (95% CIs of
eigenvalue estimates) in spawners and non-spawners

I Computationally expensive, but cost minimized using parallel
computing



Future Work

I Incorporate temperature profile into model

I The fact that there is a “preferred” temperature might help
predict spawning occurrence

I Evaluate importance of upstream or downstream movement
for spawning prediction

I Further data collection for developing model for not only the
occurrence, but the timing of spawning - currently in progress

The work presented here is to appear - (2009) Journal of the Royal
Statistical Society - Series C. 58: 47–64


